Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie Vallet is active.

Publication


Featured researches published by Valérie Vallet.


Journal of Chemical Physics | 2000

A two-step uncontracted determinantal effective Hamiltonian-based SO–CI method

Valérie Vallet; Laurent Maron; Christian Teichteil; Jean-Pierre Flament

We present a new two-step uncontracted spin-orbit configuration interaction (CI) method which automatically accounts for spin-orbit polarization effects on multiconfigurational wave functions by selecting the single excitations having a significant spin-orbit interaction with a chosen determinantal reference space. This approach is in the line of a conventional two-step method, as a sophisticated correlation treatment in a scalar relativistic approximation is carried out in the first step. In the second step, we define a model space which includes a set of reference configurations able to represent all the wanted states along with singly excited configurations selected with the spin-orbit (SO) operator. We then exploit the first-step calculation in order to include correlation effects via an effective Hamiltonian technique and diagonalize the full matrix on the determinantal basis. The method combines the advantages of both one-step and conventional two-step SO–CI methods; it intends to treat efficiently ...


Journal of Chemical Physics | 2005

Photochemistry of pyrrole: Time-dependent quantum wave-packet description of the dynamics at the π1σ*-S0 conical intersections

Valérie Vallet; Zhenggang Lan; S. Mahapatra; Andrzej L. Sobolewski; Wolfgang Domcke

The photoinduced hydrogen-elimination reaction in pyrrole via the conical intersections of the two π1σ* excited states with the electronic ground states [B11(πσ*)-S0 and A21(πσ*)-S0] have been investigated by time-dependent quantum wave-packet calculations. Model potential-energy surfaces of reduced dimensionality have been constructed on the basis of accurate multireference ab initio electronic-structure calculations. For the B11-S0 conical intersection, the model includes the NH stretching coordinate as the tuning mode and the hydrogen out-of-plane bending coordinate as the coupling mode. For the A21-S0 conical intersection, the NH stretching coordinate and the screwing coordinate of the ring hydrogens are taken into account. The latter is the dominant coupling mode of this conical intersection. The electronic population-transfer processes at the conical intersections, the branching ratio between the dissociation channels, and their dependence on the initial preparation of the system have been investiga...


Journal of Chemical Physics | 2005

Time-dependent quantum wave-packet description of the π1σ* photochemistry of phenol

Zhenggang Lan; Wolfgang Domcke; Valérie Vallet; Andrzej L. Sobolewski; S. Mahapatra

The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.


Journal of Physical Chemistry A | 2012

Probing the Nature of Chemical Bonding in Uranyl(VI) Complexes with Quantum Chemical Methods.

Valérie Vallet; Ulf Wahlgren; Ingmar Grenthe

To assess the nature of chemical bonds in uranyl(VI) complexes with Lewis base ligands, such as F(-), Cl(-), OH(-), CO(3)(2-), and O(2)(2-), we have used quantum chemical observables, such as the bond distances, the internal symmetric/asymmetric uranyl stretch frequencies, and the electron density with its topology analyzed using the quantum theory of atoms-in-molecules. This analysis confirms that complex formation induces a weakening of the uranium-axial oxygen bond, reflected by the longer U-O(yl) bond distance and reduced uranyl-stretching frequencies. The strength of the ligand-induced effect increases in the order H(2)O < Cl(-) < F(-) < OH(-) < CO(3)(2-) < O(2)(2-). In-depth analysis reveals that the trend across the series does not always reflect an increasing covalent character of the uranyl-ligand bond. By using a point-charge model for the uranyl tetra-fluoride and tetra-chloride complexes, we show that a significant part of the uranyl bond destabilization arises from purely electrostatic interactions, the remaining part corresponding either to charge-transfer from the negatively charged ligands to the uranyl unit or a covalent interaction. The charge-transfer and the covalent interaction are qualitatively different due to the absence of a charge build up in the uranyl-halide bond region in the latter case. In all the charged complexes, the uranyl-ligand bond is best described as an ionic interaction. However, there are covalent contributions in the very stable peroxide complex and, to some extent, also in the carbonate complex. This study demonstrates that it is possible to describe the nature of chemical bond by observables rather than by ad hoc quantities such as atomic populations or molecular orbitals.


Chemical Physics | 1999

Reduction of uranyl by hydrogen: an ab initio study

Valérie Vallet; Bernd Schimmelpfennig; Laurent Maron; Christian Teichteil; Thierry Leininger; Odd Gropen; Ingmar Grenthe; Ulf Wahlgren

Abstract We present in this paper a systematic investigation of the accuracy of different theoretical approaches to uranyl reduction. All-electron and RECP results are compared at the SCF and different correlated levels, including density functional methods. The comparison is done for geometries and reaction energies. The influence of spin-orbit interaction on energies is also investigated.


Journal of Chemical Theory and Computation | 2008

An Investigation of the Accuracy of Different DFT Functionals on the Water Exchange Reaction in Hydrated Uranyl(VI) in the Ground State and the First Excited State

Pernilla Wåhlin; Cécile Danilo; Valérie Vallet; Florent Réal; Jean-Pierre Flament; Ulf Wahlgren

We discuss the accuracy of density functional theory (DFT) in the gas phase for the water-exchange reactions in the uranyl(VI) aqua ion taking place both in the electronic ground state and in the first excited state (the luminescent (3)Δg state). The geometries of the reactant and intermediates have been optimized using DFT and the B3LYP functional, with a restricted closed-shell formalism for the electronic ground state and either an unrestricted open-shell formalism or the time-dependent DFT method for the (3)Δg state. The relative energies have been computed with wave-function-based methods such as Møller-Plesset second-order perturbation theory, or a minimal multireference perturbative calculation (minimal CASPT2); coupled-cluster method (CCSD(T)); DFT with B3LYP, BLYP, and BHLYP correlation and exchange functionals; and the hybrid DFT-multireference configuration interaction method. The results obtained with second-order perturbative methods are in excellent agreement with those obtained with the CCSD(T) method. However, DFT methods overestimate the energies of low coordination numbers, yielding to too high and too low reaction energies for the associative and dissociative reactions, respectively. Part of the errors appears to be associated with the amount of Hartree-Fock exchange used in the functional; for the dissociative intermediate in the ground state, the pure DFT functionals underestimate the reaction energy by 20 kJ/mol relative to wave-function-based methods, and when the amount of HF exchange is increased to 20% (B3LYP) and to 50% (BHLYP), the error is decreased to 13 and 4 kJ/mol, respectively.


Journal of Chemical Physics | 2004

Can density functional methods be used for open-shell actinide molecules? Comparison with multiconfigurational spin-orbit studies

Carine Clavaguéra-Sarrio; Valérie Vallet; Daniel Maynau; Colin J. Marsden

The geometries, electronic structures, and vibrational frequencies of two isoelectronic compounds PuO(2)(2+) and PuN(2) have been studied in detail at the density functional theory (DFT) and multiconfigurational ab initio levels of theory. Dynamic correlation was taken into account using second-order perturbation theory (CASPT2) and the variational difference-dedicated configuration interaction method for comparison with the results of the DFT study. Spin-orbit effects were included within the framework of an effective uncontracted spin-orbit configuration-interaction method which considers electron correlation effects and spin-orbit coupling on equal footing. The twelve lowest f-f electronic transitions are reported. The electronic ground state of both systems is found to be the Omega=4 component of (3)H(g). We thus disagree with an earlier assignment of the ground state of PuN(2) [E. F. Archibong and A. K. Ray, J. Mol. Struct: THEOCHEM 530, 165 (2000)]. Spin-orbit effects are small on both the geometry and vibrational frequencies of the ground states of PuO(2)(2+) and PuN(2), but they completely change the distribution of electronically excited states. A comparison of results obtained with the two classes of methods allows us to demonstrate that an unambiguous assignment of the electronic ground state and electronic spectra requires the use of multireference methods including spin-orbit coupling. Single-reference methods such as DFT provide a reasonable description of the electronic properties of ground states of these open-shell systems, and therefore also of their structural and vibrational properties. The experimental antisymmetric stretching frequency of matrix-isolated PuN(2) is reproduced well by both CASPT2 and DFT calculations; generalized gradient approximation formulations of DFT are more successful than hybrid versions in this respect. Ground-state properties of UO(2) (2+), UN(2), UO(2), PuO(2) (2+), and PuN(2) are compared and discussed.


Journal of Chemical Physics | 2007

Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: A comparison between wave-function theory and density functional theory

Florent Réal; Valérie Vallet; Christel M. Marian; Ulf Wahlgren

In order to assess the accuracy of wave-function and density functional theory (DFT) based methods for excited states of the uranyl(VI) UO2(2+) molecule excitation energies and geometries of states originating from excitation from the sigma(u), sigma(g), pi(u), and pi(g) orbitals to the nonbonding 5f(delta) and 5f(phi) have been calculated with different methods. The investigation included linear-response CCSD (LR-CCSD), multiconfigurational perturbation theory (CASSCFCASPT2), size-extensivity corrected multireference configuration interaction (MRCI) and AQCC, and the DFT based methods time-dependent density functional theory (TD-DFT) with different functionals and the hybrid DFTMRCI method. Excellent agreement between all nonperturbative wave-function based methods was obtained. CASPT2 does not give energies in agreement with the nonperturbative wave-function based methods, and neither does TD-DFT, in particular, for the higher excitations. The CAM-B3LYP functional, which has a corrected asymptotic behavior, improves the accuracy especially in the higher region of the electronic spectrum. The hybrid DFTMRCI method performs better than TD-DFT, again compared to the nonperturbative wave-function based results. However, TD-DFT, with common functionals such as B3LYP, yields acceptable geometries and relaxation energies for all excited states compared to LR-CCSD. The structure of excited states corresponding to excitation out of the highest occupied sigma(u) orbital are symmetric while that arising from excitations out of the pi(u) orbitals have asymmetric structures. The distant oxygen atom acquires a radical character and likely becomes a strong proton acceptor. These electronic states may play an important role in photoinduced proton exchange with a water molecule of the aqueous environment.


Journal of Physical Chemistry B | 2010

Quantum Chemical and Molecular Dynamics Study of the Coordination of Th(IV) in Aqueous Solvent

Florent Réal; Michael Trumm; Valérie Vallet; Bernd Schimmelpfennig; Michel Masella; Jean-Pierre Flament

In this work, we investigate the solvation of tetravalent thorium Th(IV) in aqueous solution using classical molecular dynamics simulations at the 10 ns scale and based on polarizable force-field approaches, which treat explicitly the covalent character of the metal-water interaction (and its inherent cooperative character). We have carried out a thorough analysis of the accuracy of the ab initio data that we used to adjust the force-field parameters. In particular, we show that large atomic basis sets combined with wave function-based methods (such as the MP2 level) have to be preferred to density functional theory when investigating Th(IV)/water aggregates in gas phase. The information extracted from trajectories in solution shows a well-structured Th(IV) first hydration shell formed of 8.25 ± 0.2 water molecules and located at about 2.45 ± 0.02 Å and a second shell of 17.5 ± 0.5 water molecules at about 4.75 Å. Concerning the first hydration sphere, our results correspond to the lower bounds of experimental estimates (which range from 8 to 12.7); however, they are in very good agreement with the average of existing experimental data, 2.45 ± 0.02 Å. All our results demonstrate the predictable character of the proposed approach, as well as the need of accounting explicitly for the cooperative character of charge-transfer phenomena affecting the Th(IV)/water interaction to build up reliable and accurate force-field approaches devoted to such studies.


Faraday Discussions | 2004

Time-dependent quantum wave-packet description of the 1πσ* photochemistry of pyrrole

Valérie Vallet; Zhenggang Lan; S. Mahapatra; Andrzej L. Sobolewski; Wolfgang Domcke

The photoinduced hydrogen elimination reaction in pyrrole via the conical intersection of the 1B1 (1πσ*) excited state with the electronic ground state has been investigated by time-dependent quantum wave-packet dynamics. A two-dimensional model potential-energy surface has been constructed as a function of the NH stretching and the hydrogen out-of-plane bending mode, employing multi-reference ab initio electronic-structure methods. The branching ratio of the reactive flux at the conical intersection has been investigated in dependence on the initial vibrational state of the molecule. The results suggest that laser control of the photodissociation of pyrrole via mode-specific vibrational excitation should be possible.

Collaboration


Dive into the Valérie Vallet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingmar Grenthe

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Schimmelpfennig

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Flament

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

François Virot

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Zoltán Szabó

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Laurent Cantrel

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

S. Mahapatra

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge