Valerio Fasano
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valerio Fasano.
Angewandte Chemie | 2015
Andrew J. Warner; James R. Lawson; Valerio Fasano; Michael J. Ingleson
Abstract BCl3 is an inexpensive electrophile which induces the borylative cyclization of a wide range of substituted alkynes to regioselectively form polycycles containing synthetically versatile C(sp2)—boronate esters. It proceeds rapidly, with good yields and is compatible with a range of functional groups and substitution patterns. Intermolecular 1,2‐carboboration of alkynes is also achieved using BCl3 to generate trisubstituted vinyl boronate esters.
Chemistry: A European Journal | 2017
Valerio Fasano; Michael J. Ingleson
Abstract Lower Lewis acidity boranes demonstrate greater tolerance to combinations of water/strong Brønsted bases than B(C6F5)3, this enables Si−H bond activation by a frustrated Lewis pair (FLP) mechanism to proceed in the presence of H2O/alkylamines. Specifically, BPh3 has improved water tolerance in the presence of alkylamines as the Brønsted acidic adduct H2O–BPh3 does not undergo irreversible deprotonation with aliphatic amines in contrast to H2O–B(C6F5)3. Therefore BPh3 is a catalyst for the reductive amination of aldehydes and ketones with alkylamines using silanes as reductants. A range of amines inaccessible using B(C6F5)3 as catalyst, were accessible by reductive amination catalysed by BPh3 via an operationally simple methodology requiring no purification of BPh3 or reagents/solvent. BPh3 has a complementary reductive amination scope to B(C6F5)3 with the former not an effective catalyst for the reductive amination of arylamines, while the latter is not an effective catalyst for the reductive amination of alkylamines. This disparity is due to the different pK a values of the water–borane adducts and the greater susceptibility of BPh3 species towards protodeboronation. An understanding of the deactivation processes occurring using B(C6F5)3 and BPh3 as reductive amination catalysts led to the identification of a third triarylborane, B(3,5‐Cl2C6H3)3, that has a broader substrate scope being able to catalyse the reductive amination of both aryl and alkyl amines with carbonyls.
Chemistry: A European Journal | 2017
Valerio Fasano; James E. Radcliffe; Liam D. Curless; Michael J. Ingleson
Abstract N−Me‐Benzothiazolium salts are introduced as a new family of Lewis acids able to activate Si−H σ bonds. These carbon‐centred Lewis acids were demonstrated to have comparable Lewis acidity towards hydride as found for the triarylboranes widely used in Si−H σ‐bond activation. However, they display low Lewis acidity towards hard Lewis bases such as Et3PO and H2O in contrast to triarylboranes. The N−Me‐benzothiazolium salts are effective catalysts for a range of hydrosilylation and dehydrosilylation reactions. Judicious selection of the C2 aryl substituent in these cations enables tuning of the steric and electronic environment around the electrophilic centre to generate more active catalysts. Finally, related benzoxazolium and benzimidazolium salts were found also to be active for Si−H bond activation and as catalysts for the hydrosilylation of imines.
Angewandte Chemie | 2017
Valerio Fasano; Liam D. Curless; James E. Radcliffe; Michael J. Ingleson
Abstract Frustrated Lewis pair (FLP) chemistry enables a rare example of alkyne 1,2‐hydrocarbation with N‐methylacridinium salts as the carbon Lewis acid. This 1,2‐hydrocarbation process does not proceed through a concerted mechanism as in alkyne syn‐hydroboration, or through an intramolecular 1,3‐hydride migration as operates in the only other reported alkyne 1,2‐hydrocarbation reaction. Instead, in this study, alkyne 1,2‐hydrocarbation proceeds by a novel mechanism involving alkyne dehydrocarbation with a carbon Lewis acid based FLP to form the new C−C bond. Subsequently, intermolecular hydride transfer occurs, with the Lewis acid component of the FLP acting as a hydride shuttle that enables alkyne 1,2‐hydrocarbation.
Organometallics | 2017
James E. Radcliffe; Jay J. Dunsford; Jessica Cid; Valerio Fasano; Michael J. Ingleson
The relative (to BEt3) hydride ion affinity (HIA) of a series of acridine borenium salts has been calculated, with some HIAs found to be similar to that for [Ph3C]+. The HIA at the acridine C9 position is controlled by both acridine and the boron substituents, the latter presumably affecting the strength of the B=N bond in the acridane-BY2 products from hydride transfer. Through a range of hydride abstraction benchmarking reactions against organic hydride donors the experimental HIA of [F5acr-BCat]+ (cat = catechol, F5acr = 1,2,3,4,7-pentafluoroacridine) has been confirmed to be extremely high and closely comparable to that of [Ph3C]+. The high HIA of [F5acr-BCat]+ enables H2 and alkene activation in a FLP with 2,6-di-tert-butylpyridine. Finally, the HIA of pyridine and quinoline borenium cations has been determined, with the HIA at boron in [PinB(amine)]+ (pin = pinacol, amine = pyridine or quinoline) found to be relatively low. This enabled the hydroboration of pyridine and quinoline by HBPin to be achieved through the addition of 5–10 mol % of bench-stable cationic carbon Lewis acids such as 2-phenyl-N,N-dimethylimidazolium salts.
Angewandte Chemie | 2018
Valerio Fasano; Jessica Cid; Richard J. Procter; Emily Ross; Michael J. Ingleson
Abstract An intramolecular 1,2‐boryl‐anion migration from boron to carbon has been achieved by selective activation of the π system in [(vinyl)B2Pin2)]− using “soft” BR3 electrophiles (BR3=BPh3 or 9‐aryl‐BBN). The soft character is key to ensure 1,2‐migration proceeds instead of oxygen coordination/B−O activation. The BR3‐induced 1,2‐boryl‐anion migration represents a triple borylation of a vinyl Grignard reagent using only B2Pin2 and BR3 and forms differentially protected 1,1,2‐triborylated alkanes. Notably, by increasing the steric bulk at the β position of the vinyl Grignard reagent used to activate B2Pin2, 1,2‐boryl‐anion migration can be suppressed in favor of intermolecular {BPin}− transfer to BPh3, thus enabling simple access to unsymmetrical sp2−sp3 diboranes.
ACS Catalysis | 2016
Valerio Fasano; James E. Radcliffe; Michael J. Ingleson
Dalton Transactions | 2016
James R. Lawson; Valerio Fasano; Jessica Cid; Iñigo J. Vitorica-Yrezabal; Michael J. Ingleson
Chemical Communications | 2018
Valerio Fasano; James H. W. LaFortune; Julia M. Bayne; Michael J. Ingleson; Douglas W. Stephan
Organometallics | 2017
Valerio Fasano; James E. Radcliffe; Michael J. Ingleson