Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valerio Joe Utzeri is active.

Publication


Featured researches published by Valerio Joe Utzeri.


Meat Science | 2014

Differentiation of meat from European wild boars and domestic pigs using polymorphisms in the MC1R and NR6A1 genes

Luca Fontanesi; Anisa Ribani; E. Scotti; Valerio Joe Utzeri; N. Veličković; Stefania Dall'Olio

Wild boar meat cannot be easily distinguished from domestic pig meat, especially in processed products, thus it can be fraudulently substituted with cheaper domestic pork. In this study we genotyped polymorphisms in two genes (MC1R, affecting coat color and NR6A1, associated with number of vertebrae) in 293 domestic pigs of five commercial breeds, 111 wild boars sampled in Italy, and 90 in Slovenia and other Western Balkan regions. Allele and genotype frequency data were used to set up a DNA-based method to distinguish meat of wild boars and domestic pigs. Genotyping results indicated that domesticated genes were introgressed into wild boar populations. This complicated the determination of the origin of the meat and would cause a high error rate if markers of only one gene were used. The combined use of polymorphisms in the two analyzed genes substantially reduced false negative results.


PLOS ONE | 2015

Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

Francesca Bertolini; Concetta Scimone; Claudia Geraci; G. Schiavo; Valerio Joe Utzeri; Vincenzo Chiofalo; Luca Fontanesi

Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.


Food Chemistry | 2018

Application of next generation semiconductor based sequencing for species identification in dairy products

Anisa Ribani; G. Schiavo; Valerio Joe Utzeri; Francesca Bertolini; Claudia Geraci; Samuele Bovo; Luca Fontanesi

In this study, we applied a next generation sequencing (NGS) technology (Ion Torrent) for species identification based on three mitochondrial DNA (mtDNA) regions amplified on DNA extracted from dairy products. Sequencing reads derived from three libraries, obtained from artificial DNA pools or from pooled amplicons, were used to test the method. Then, sequencing results from five libraries obtained from two mixed goat and cow milk samples, one buffalo mozzarella cheese, one goat crescenza cheese and one artisanal cured ricotta cheese, were able to detect all expected species in addition to undeclared species in a few of them. Mining generated reads it was possible to identify different dairy species mitotypes and the presence of human DNA that could constitute a potential marker to monitor the hygienic level of dairy products. Overall results demonstrated the usefulness of NGS for species identification in food products and its possible application for food authentication.


DNA Research | 2017

A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture

G. Schiavo; Orsolya Ivett Hoffmann; Anisa Ribani; Valerio Joe Utzeri; Marco Ciro Ghionda; Francesca Bertolini; Claudia Geraci; Samuele Bovo; Luca Fontanesi

Abstract Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome.


Animal Genetics | 2016

The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

Valerio Joe Utzeri; Francesca Bertolini; Anisa Ribani; G. Schiavo; Stefania Dall'Olio; Luca Fontanesi

A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource.


Animal Biotechnology | 2016

Identification of Polymorphisms in the Rabbit Growth Hormone Receptor (GHR) Gene and Association with Finishing Weight in a Commercial Meat Rabbit Line

Luca Fontanesi; Giuseppe Sparacino; Valerio Joe Utzeri; E. Scotti; Daniela Fornasini; Stefania Dall'Olio; Andrea Frabetti

ABSTRACT A shortcut to identify DNA markers associated with economic traits is to use a candidate gene approach that is still useful in livestock species in which molecular tools and resources are not advanced or not well developed. Mutations in the growth hormone receptor (GHR) gene associated with production traits have been already described in several livestock species. For this reason GHR could be an interesting candidate gene in the rabbit. In this study we re-sequenced all exons and non-coding regions of the rabbit GHR gene in a panel of 10 different rabbits and identified 10 single nucleotide polymorphisms (SNPs). One of them (g.63453192C>G or c.106C>G), located in exon 3 was a missense mutation (p.L36V) substituting an amino acid in a highly conserved position across all mammals. This mutation was genotyped in 297 performance tested rabbits of a meat male line and association analysis showed that the investigated SNP was associated with weight at 70 days (P < 0.05). The most frequent genotype (GG) was in animals with higher weight at this age, suggesting that the high directional selection pressure toward this trait since the constitution of the genotyped line might have contributed to shape allele frequencies at this polymorphic site.


Scientific Reports | 2018

Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes

Valerio Joe Utzeri; G. Schiavo; Anisa Ribani; Silvia Tinarelli; Francesca Bertolini; Samuele Bovo; Luca Fontanesi

Honeydew produced from the excretion of plant-sucking insects (order Hemiptera) is a carbohydrate-rich material that is foraged by honey bees to integrate their diets. In this study, we used DNA extracted from honey as a source of environmental DNA to disclose its entomological signature determined by honeydew producing Hemiptera that was recovered not only from honeydew honey but also from blossom honey. We designed PCR primers that amplified a fragment of mitochondrial cytochrome c oxidase subunit 1 (COI) gene of Hemiptera species using DNA isolated from unifloral, polyfloral and honeydew honeys. Ion Torrent next generation sequencing metabarcoding data analysis assigned Hemiptera species using a customized bioinformatic pipeline. The forest honeydew honeys reported the presence of high abundance of Cinara pectinatae DNA, confirming their silver fir forest origin. In all other honeys, most of the sequenced reads were from the planthopper Metcalfa pruinosa for which it was possible to evaluate the frequency of different mitotypes. Aphids of other species were identified from honeys of different geographical and botanical origins. This unique entomological signature derived by environmental DNA contained in honey opens new applications for honey authentication and to disclose and monitor the ecology of plant-sucking insects in agricultural and forest landscapes.


Genes | 2018

New Insights into the Melanophilin (MLPH) Gene Affecting Coat Color Dilution in Rabbits

Julie Demars; Nathalie Iannuccelli; Valerio Joe Utzeri; Gérard Auvinet; Juliette Riquet; Luca Fontanesi; D. Allain

Coat color dilution corresponds to a specific pigmentation phenotype that leads to a dilution of wild type pigments. It affects both eumelanin and pheomelanin containing melanosomes. The mode of inheritance of the dilution phenotype is autosomal recessive. Candidate gene approaches focused on the melanophilin (MLPH) gene highlighted two variants associated with the dilution phenotype in rabbits: The c.111-5C>A variant that is located in an acceptor splice site or the c.585delG variant, a frameshift mutation. On the transcript level, the skipping of two exons has been reported as the molecular mechanism responsible for the coat color dilution. To clarify, which of the two variants represents the causal variant, (i) we analyzed their allelic segregation by genotyping Castor and Chinchilla populations, and (ii) we evaluated their functional effects on the stability of MLPH transcripts in skin samples of animals with diluted or wild type coat color. Firstly, we showed that the c.585delG variant showed perfect association with the dilution phenotype in contrast to the intronic c.111-5C>A variant. Secondly, we identified three different MLPH isoforms including the wild type isoform, the exon-skipping isoform and a retained intron isoform. Thirdly, we observed a drastic and significant decrease of MLPH transcript levels in rabbits with a coat color dilution (p-values ranging from 10−03 to 10−06). Together, our results bring new insights into the coat color dilution trait.


PLOS ONE | 2017

A viral metagenomic approach on a non-metagenomic experiment: Mining next generation sequencing datasets from pig DNA identified several porcine parvoviruses for a retrospective evaluation of viral infections

Samuele Bovo; G. Mazzoni; Anisa Ribani; Valerio Joe Utzeri; Francesca Bertolini; G. Schiavo; Luca Fontanesi

Shot-gun next generation sequencing (NGS) on whole DNA extracted from specimens collected from mammals often produces reads that are not mapped (i.e. unmapped reads) on the host reference genome and that are usually discarded as by-products of the experiments. In this study, we mined Ion Torrent reads obtained by sequencing DNA isolated from archived blood samples collected from 100 performance tested Italian Large White pigs. Two reduced representation libraries were prepared from two DNA pools constructed each from 50 equimolar DNA samples. Bioinformatic analyses were carried out to mine unmapped reads on the reference pig genome that were obtained from the two NGS datasets. In silico analyses included read mapping and sequence assembly approaches for a viral metagenomic analysis using the NCBI Viral Genome Resource. Our approach identified sequences matching several viruses of the Parvoviridae family: porcine parvovirus 2 (PPV2), PPV4, PPV5 and PPV6 and porcine bocavirus 1-H18 isolate (PBoV1-H18). The presence of these viruses was confirmed by PCR and Sanger sequencing of individual DNA samples. PPV2, PPV4, PPV5, PPV6 and PBoV1-H18 were all identified in samples collected in 1998–2007, 1998–2000, 1997–2000, 1998–2004 and 2003, respectively. For most of these viruses (PPV4, PPV5, PPV6 and PBoV1-H18) previous studies reported their first occurrence much later (from 5 to more than 10 years) than our identification period and in different geographic areas. Our study provided a retrospective evaluation of apparently asymptomatic parvovirus infected pigs providing information that could be important to define occurrence and prevalence of different parvoviruses in South Europe. This study demonstrated the potential of mining NGS datasets non-originally derived by metagenomics experiments for viral metagenomics analyses in a livestock species.


Animal Genetics | 2014

A premature stop codon in the TYRP1 gene is associated with brown coat colour in the European rabbit (Oryctolagus cuniculus)

Valerio Joe Utzeri; Anisa Ribani; Luca Fontanesi

Collaboration


Dive into the Valerio Joe Utzeri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Scotti

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge