Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeriy M. Tenishev is active.

Publication


Featured researches published by Valeriy M. Tenishev.


Science | 2015

MAVEN observations of the response of Mars to an interplanetary coronal mass ejection

Bruce M. Jakosky; Joseph M. Grebowsky; J. G. Luhmann; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; J. S. Halekas; D. Larson; P. Mahaffy; J. P. McFadden; D. F. Mitchell; Nicholas M. Schneider; Richard W. Zurek; S. W. Bougher; D. A. Brain; Y. J. Ma; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.


The Astrophysical Journal | 2008

A Global Kinetic Model for Cometary Comae: The Evolution of the Coma of the Rosetta Target Comet Churyumov-Gerasimenko throughout the Mission

Valeriy M. Tenishev; Michael R. Combi; B. Davidsson

The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Model studies of the coma will be required not only for planning of the mission and interpretation of spacecraft data, but also for an expectedly large amount of complementary remote observational data that will be obtained in the meantime. A full-scale simulation of the coma under conditions occurring during the mission can be done only on the basis of a kinetic model. In this work we present a newly developed direct simulation Monte Carlo model of a multispecies coma, where components of the coma are coupled through momentum exchange and photochemical processes, and its application to the case of comet Churyumov-Gerasimenko. It is shown that kinetic effects determine the state of the coma, which limits applicability of a hydrodynamics approach. The study of the coma was performed in the region starting from the surface of the nucleus and extending up to 106 km, which allows incorporation of a realistic model of the gas production from the nucleus from a thermophysical model of a porous ice/dust mixture accounting for the thermal reradiation, the subsurface sublimation and recondensation, and the subsurface mass and energy transport. The results obtained present states of the coma for a series of stages throughout the Rosetta mission and can serve for the planning of the mission as well as for the interpretation of ground-based observations during the 2009 and 2016 apparitions.


Journal of Geophysical Research | 2009

Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions

Arnaud Valeille; Valeriy M. Tenishev; Stephen W. Bougher; Michael R. Combi; Andrew F. Nagy

important reaction, the dissociative recombination of O2 is responsible for most of the production of hot atomic oxygen deep in the dayside thermosphere/ionosphere. The investigation of the Martian upper atmosphere is therefore complicated by the change in the flow regime from a collisional to a collisionless domain. Past studies, which used simple extrapolations of 1-D thermospheric/ionospheric parameters, could not account for the full effects of realistic conditions, which are shown to be of significant influence on the exosphere both close to and far away from the exobase. In this work, the combination of the new 3-D Direct Simulation Monte Carlo kinetic model and the modern 3-D Mars Thermosphere General Circulation Model is employed to describe selfconsistently the Martian upper atmosphere at equinox for solar low conditions. For the first time, a 3-D analysis and shape of the Martian hot corona is provided, along with density and temperature profiles of cold and hot constituents as functions of position on the planet. Atmospheric loss and ion production (found to be more than an order of magnitude lower than the neutral escape), calculated locally all around the planet, provide valuable information for plasma models, refining the understanding of the ion loss, atmospheric sputtering, and interaction with the solar wind, in general.


Journal of Geophysical Research | 2009

Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history

Arnaud Valeille; Michael R. Combi; Stephen W. Bougher; Valeriy M. Tenishev; Andrew F. Nagy

[1] The global dynamics of the flow of energetic particles through the Martian upper atmosphere is studied for different cases reflecting variations in solar cycle, seasons, and epochs over history. In this study, the combination of the new 3-D Direct Simulation Monte Carlo kinetic model and the modern 3-D Mars Thermosphere General Circulation Model is employed to describe self-consistently the Martian upper atmosphere (i.e., the thermosphere/ionosphere and the exosphere). The variations in the Martian upper atmosphere over long-term (seasons and solar cycle) and evolutionary (Martian history) time scales are presented and discussed using the equinox solar low case extensively described in the work of Valeille et al. (2009c) as reference throughout. These characteristic conditions lead to significant variations in the thermosphere/ionosphere temperatures, dynamical heating, winds, and ion/neutral density distributions, which, in turn, affect the exosphere general structure, the hot corona shape, and the escape rate and have important implications for the study of the ion loss, atmospheric sputtering, and interaction with the solar wind in general. Calculations for present conditions are performed for three characteristic seasons (aphelion, equinox, and perihelion), while solar activity is either fixed to low or high conditions. Calculations for past conditions are related to a solar EUV flux enhancement of 1, 3, and 6 times the present values. Spatial-, seasonal-, solar cycle–, and evolutionary-driven variations, although exhibiting very different time scales, are all shown to exert an influence of the same order. Models of Mars upper atmosphere should address them accordingly.


Astronomy and Astrophysics | 2015

Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko

André Bieler; Kathrin Altwegg; H. Balsiger; Jean-Jacques Berthelier; Ursina Maria Calmonte; Michael R. Combi; Johan De Keyser; Björn Fiethe; N. Fougere; S. A. Fuselier; Sébastien Gasc; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Zhenguang Huang; Annette Jäckel; Xianzhe Jia; Léna Le Roy; U. Mall; H. Rème; Martin Rubin; Valeriy M. Tenishev; Gabor Zsolt Toth; Chia-Yu Tzou; Peter Wurz

67P/Churyumov-Gerasimenko (hereafter 67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 1026 molecules s−1.


Science | 2015

Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability

S. W. Bougher; Bruce M. Jakosky; J. S. Halekas; Joseph M. Grebowsky; J. G. Luhmann; P. Mahaffy; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; D. Larson; J. P. McFadden; D. L. Mitchell; Nicholas M. Schneider; Richard W. Zurek; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; D. A. Brain; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary; T. E. Cravens

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.


The Astrophysical Journal | 2011

Numerical simulation of dust in a cometary COMA: Application to comet 67P/Churyumov-Gerasimenko

Valeriy M. Tenishev; Michael R. Combi; Martin Rubin

The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. With a limited amount of available observational data, planning of the mission as well as the interpretation of measurements obtained by instruments on board the spacecraft requires modeling of the dusty/gas environment of the comet. During the mission, the collision regime in the inner coma will change starting from transitional to fully collisionless. As a result, a physically correct model has to be valid at conditions that are far from equilibrium and account for the kinetic nature of the processes occurring in the coma. A study of the multi-species coma of comet 67P/Churyumov-Gerasimenko is presented in our previous paper, where we describe our kinetic model and discuss the results of its application to cases that correspond to the different stages during the mission. In this work, we focus on numerical modeling of the dust phase in the coma of comet 67P/Churyumov-Gerasimenko and its interaction with the surrounding gas. The basic phenomena that govern the dynamics and energy balance of the dust grains are outlined. The effect of solar radiation pressure and the nucleus gravity in limiting the maximum liftable mass of the grains is discussed. The distribution of the terminal velocity of the dust grains as a function of subsolar angle is derived in the paper. We have found that in the regions with high gradients of the gas density, spike-like features can form in the dust flow. The obtained results represent the state of the coma in the vicinity of the nucleus for a series of stages throughout the Rosetta mission. The implications of the model results for future measurements by the GIADA instrument are discussed.


Astronomy and Astrophysics | 2016

Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta

N. Fougere; Kathrin Altwegg; J.-J. Berthelier; André Bieler; Dominique Bockelee-Morvan; Ursina Maria Calmonte; F. Capaccioni; Michael R. Combi; J. De Keyser; V. Debout; Stephane Erard; Björn Fiethe; G. Filacchione; U. Fink; S. A. Fuselier; Tamas I. Gombosi; Kenneth Calvin Hansen; Myrtha Hässig; Zhenguang Huang; Léna Le Roy; Cedric Leyrat; A. Migliorini; G. Piccioni; G. Rinaldi; Martin Rubin; Y. Shou; Valeriy M. Tenishev; Gabor Zsolt Toth; Chia-Yu Tzou

Since its rendezvous with comet 67P/Churyumov-Gerasimenko (67P), the Rosetta spacecraft has provided invaluable information contributing to our understanding of the cometary environment. On board, the VIRTIS and ROSINA instruments can both measure gas parameters in the rarefied cometary atmosphere, the so-called coma, and provide complementary results with remote sensing and in situ measurement techniques, respectively. The data from both ROSINA and VIRTIS instruments suggest that the source regions of H2O and CO2 are not uniformly distributed over the surface of the nucleus even after accounting for the changing solar illumination of the irregularly shaped rotating nucleus. The source regions of H2O and CO2 are also relatively different from one another. Aims. The use of a combination of a formal numerical data inversion method with a fully kinetic coma model is a way to correlate and interpret the information provided by these two instruments to fully understand the volatile environment and activity of comet 67P. Methods. In this work, the nonuniformity of the outgassing activity at the surface of the nucleus is described by spherical harmonics and constrained by ROSINA-DFMS data. This activity distribution is coupled with the local illumination to describe the inner boundary conditions of a 3D direct simulation Monte-Carlo (DSMC) approach using the Adaptive Mesh Particle Simulator (AMPS) code applied to the H2O and CO2 coma of comet 67P. Results. We obtain activity distribution of H2O and CO2 showing a dominant source of H2O in the Hapi region, while more CO2 is produced in the southern hemisphere. The resulting model outputs are analyzed and compared with VIRTIS-M/-H and ROSINA-DFMS measurements, showing much better agreement between model and data than a simpler model assuming a uniform surface activity. The evolution of the H2O and CO2 production rates with heliocentric distance are derived accurately from the coma model showing agreement between the observations from the different instruments and ground-based observations. Conclusions. We derive the activity distributions for H2O and CO2 at the surface of the nucleus described in spherical harmonics, which we couple to the local solar illumination to constitute the boundary conditions of our coma model. The model presented reproduces the coma observations made by the ROSINA and VIRTIS instruments on board the Rosetta spacecraft showing our understanding of the physics of 67P’s coma. This model can be used for further data analyses, such as dust modeling, in a future work.


The Astrophysical Journal | 2012

NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS

Michael R. Combi; Valeriy M. Tenishev; Martin Rubin; N. Fougere; Tamas I. Gombosi

Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comets nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.


Journal of Geophysical Research | 2010

An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus

Valeriy M. Tenishev; Michael R. Combi; B. D. Teolis; J. H. Waite

[1] In addition to being the major source of neutral gas and dust particles for the Saturnian E‐ring and, ultimately, heavy ions for the Saturnian inner magnetosphere, Enceladus exhibits geological activity that has made it an object of recent intensive study. The interest has significantly increased after Cassini flybys in 2005 provided a detailed map of its surface, showing that most of its activity occurs in a region around the south pole of the satellite. Dust jets that were discovered during the flybys can be related to a set of localized gas sources that dominate the supply of material into the rarefied atmosphere of Enceladus. A comprehensive data analysis involves developing physical models that include all major processes occurring in the atmosphere. Such models can be used not only for calibration and understanding of data already available, but also could have a practical application for planning upcoming flybys. This work presents the results of the development and application of a kinetic model of the Enceladus’ atmosphere consisting of a gas described in terms of its distribution function. The paper describes the basic principles of the modelandgivesacomparisonwiththeobservationaldataobtainedwithCassiniinstruments.

Collaboration


Dive into the Valeriy M. Tenishev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamas I. Gombosi

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Fougere

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge