Valery Naranjo
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valery Naranjo.
IEEE Transactions on Medical Imaging | 2013
Sandra Morales; Valery Naranjo; Jesús Angulo; Mariano Alcañiz
The algorithm proposed in this paper allows to automatically segment the optic disc from a fundus image. The goal is to facilitate the early detection of certain pathologies and to fully automate the process so as to avoid specialist intervention. The method proposed for the extraction of the optic disc contour is mainly based on mathematical morphology along with principal component analysis (PCA). It makes use of different operations such as generalized distance function (GDF), a variant of the watershed transformation, the stochastic watershed, and geodesic transformations. The input of the segmentation method is obtained through PCA. The purpose of using PCA is to achieve the grey-scale image that better represents the original RGB image. The implemented algorithm has been validated on five public databases obtaining promising results. The average values obtained (a Jaccards and Dices coefficients of 0.8200 and 0.8932, respectively, an accuracy of 0.9947, and a true positive and false positive fractions of 0.9275 and 0.0036) demonstrate that this method is a robust tool for the automatic segmentation of the optic disc. Moreover, it is fairly reliable since it works properly on databases with a large degree of variability and improves the results of other state-of-the-art methods.
IEEE Transactions on Medical Imaging | 2012
Tony Shepherd; Mika Teräs; Reinhard Beichel; Ronald Boellaard; Michel Bruynooghe; Volker Dicken; Mark J. Gooding; Peter J. Julyan; John Aldo Lee; Sébastien Lefèvre; Michael Mix; Valery Naranjo; Xiaodong Wu; Habib Zaidi; Ziming Zeng; Heikki Minn
The impact of PET on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the illdefinition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasise spatial accuracy and present a new metric that addresses the lack of unique ground truth. 30 methods are used at 13 different institutions to contour functional VOIs in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualisation of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm.
Medical Image Analysis | 2014
Rina Dewi Rudyanto; Sjoerd Kerkstra; Eva M. van Rikxoort; Catalin I. Fetita; Pierre-Yves Brillet; Christophe Lefevre; Wenzhe Xue; Xiangjun Zhu; Jianming Liang; Ilkay Oksuz; Devrim Unay; Kamuran Kadipaşaogˇlu; Raúl San José Estépar; James C. Ross; George R. Washko; Juan-Carlos Prieto; Marcela Hernández Hoyos; Maciej Orkisz; Hans Meine; Markus Hüllebrand; Christina Stöcker; Fernando Lopez Mir; Valery Naranjo; Eliseo Villanueva; Marius Staring; Changyan Xiao; Berend C. Stoel; Anna Fabijańska; Erik Smistad; Anne C. Elster
The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.
international conference on image processing | 2000
Valery Naranjo; Antonio Albiol
This paper deals with the reduction of flicker in old films. This artifact appears as global, quick and random variations of the luminance and contrast between consecutive frames of a sequence. Initially, we present a method based on the correction of mean and variance parameters of the sequence. However, although this method reduces mean and variance variation between frames, it does not yield good visual results. Finally, an algorithm based on the histogram matching is proposed. This method provides much better visual results.
Computer Methods and Programs in Biomedicine | 2011
Valery Naranjo; Roberto Llorens; Mariano Alcañiz; Fernando López-Mir
Most dental implant planning systems use a 3D representation of the CT scan of the patient under study as it provides a more intuitive view of the human jaw. The presence of metallic objects in human jaws, such as amalgam or gold fillings, provokes several artifacts like streaking and beam hardening which makes the reconstruction process difficult. In order to reduce these artifacts, several methods have been proposed using the raw data, directly obtained from the tomographs, in different ways. However, in DICOM-based applications this information is not available, and thus the need of a new method that handles this task in the DICOM domain. The presented method performs a morphological filtering in the polar domain yielding output images less affected by artifacts (even in cases of multiple metallic objects) without causing significant smoothing of the anatomic structures, which allows a great improvement in the 3D reconstruction. The algorithm has been automated and compared to other image denoising methods with successful results.
international conference on pattern recognition | 2000
Antonio Albiol; Valery Naranjo; Inmaculada Mora
The paper deals with an application of image sequence analysis. In particular, it addresses the problem of determining the number of people who get into and out of a train carriage when it is crowded and background and/or illumination might change. The proposed system analyses image sequences and processes them using an algorithm based on the use of several morphological tools and optical flow motion estimation.
international conference on image processing | 2000
Antonio Albiol; Valery Naranjo; Jesús Angulo
This paper deals with techniques to detect abrupt scene transitions when random brightness variations (flicker) are present. This is normally the case when trying to restore or index old films. The application of conventional techniques in this situation tends to produce a large number of false positive detection of cuts. The paper is intently restricted to techniques which require low computation (no motion estimation).
Computer Methods and Programs in Biomedicine | 2012
Roberto Llorens; Valery Naranjo; Fernando López; Mariano Alcañiz
The success of oral surgery is subject to accurate advanced planning. In order to properly plan for dental surgery or a suitable implant placement, it is necessary an accurate segmentation of the jaw tissues: the teeth, the cortical bone, the trabecular core and over all, the inferior alveolar nerve. This manuscript presents a new automatic method that is based on fuzzy connectedness object extraction and mathematical morphology processing. The method uses computed tomography data to extract different views of the jaw: a pseudo-orthopantomographic view to estimate the path of the nerve and cross-sectional views to segment the jaw tissues. The method has been tested in a groundtruth set consisting of more than 9000 cross-sections from 20 different patients and has been evaluated using four similarity indicators (the Jaccard index, Dices coefficient, point-to-point and point-to-curve distances), achieving promising results in all of them (0.726±0.031, 0.840±0.019, 0.144±0.023 mm and 0.163±0.025 mm, respectively). The method has proven to be significantly automated and accurate, with errors around 5% (of the diameter of the nerve), and is easily integrable in current dental planning systems.
IEEE Journal of Biomedical and Health Informatics | 2017
Sandra Morales; Kjersti Engan; Valery Naranjo; Adrián Colomer
This paper investigates discrimination capabilities in the texture of fundus images to differentiate between pathological and healthy images. For this purpose, the performance of local binary patterns (LBP) as a texture descriptor for retinal images has been explored and compared with other descriptors such as LBP filtering and local phase quantization. The goal is to distinguish between diabetic retinopathy (DR), age-related macular degeneration (AMD), and normal fundus images analyzing the texture of the retina background and avoiding a previous lesion segmentation stage. Five experiments (separating DR from normal, AMD from normal, pathological from normal, DR from AMD, and the three different classes) were designed and validated with the proposed procedure obtaining promising results. For each experiment, several classifiers were tested. An average sensitivity and specificity higher than 0.86 in all the cases and almost of 1 and 0.99, respectively, for AMD detection were achieved. These results suggest that the method presented in this paper is a robust algorithm for describing retina texture and can be useful in a diagnosis aid system for retinal disease screening.
Journal of Visual Communication and Image Representation | 2011
Soledad Gomez; Valery Naranjo; Ramón Miralles
Time-frequency representations have been of great interest in the analysis and classification of non-stationary signals. The use of highly selective transformation techniques is a valuable tool for obtaining accurate information for studies of this type. The Wigner-Ville distribution has high time and frequency selectivity in addition to meeting some interesting mathematical properties. However, due to the bi-linearity of the transform, interference terms emerge when the transform is applied over multi-component signals. In this paper, we propose a technique to remove cross-components from the Wigner-Ville transform using image processing algorithms. The proposed method exploits the advantages of non-linear morphological filters, using a spectrogram to obtain an adequate marker for the morphological processing of the Wigner-Ville transform. Unlike traditional smoothing techniques, this algorithm provides cross-term attenuations while preserving time-frequency resolutions. Moreover, it could also be applied to distributions with different interference geometries. The method has been applied to a set of different time-frequency transforms, with promising results.