Valery Novokhatny
Research Triangle Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valery Novokhatny.
Thrombosis and Haemostasis | 2008
Jennifer A. Hunt; Stephen R. Petteway; Philip Scuderi; Valery Novokhatny
A simplified and fully functional deletion mutant of plasminogen was created in which the middle portion of the molecule was removed, resulting in kringle 1 attachment to the serine protease domain. This recombinant plasminogen deletion mutant, Delta(K2-K5)Pg, was produced in the form of inclusion bodies at the yield of up to 200 mg/l in an Escherichia coli T7 expression system. Following protein refolding and purification on lysine-Sepharose, the conversion of the recombinant molecule Delta(K2-K5)Pg to the active enzyme mutant Delta(K2-K5)Pm by plasminogen activators was evaluated, and functional characteristics of the simplified plasmin were studied. Properties of Delta(K2-K5)Pg were similar to native, human plasma-derived plasminogen. Delta(K2-K5)Pg effectively bound epsilon-aminocaproic acid (K(d)=11.3+/-2.3 microM) and fibrin (C(50) approximately 0.3 microM). The plasminogen activators streptokinase, urokinase, and tissue plasminogen activator effectively converted the recombinant zymogen Delta(K2-K5)Pg to the active recombinant enzyme, Delta(K2-K5)Pm. Additionally, Delta[K2-K5]Pm was rapidly inhibited by alpha(2)-antiplasmin (1.1+/-0.1 x 10(7) M(-1) s(-1)) and alpha(2)-macroglobulin (7.6+/-0.6 x 10(5) M(-1) s(-1)). In an in-vitro model, Delta(K2-K5)Pm demonstrated fibrinolytic potency comparable to human plasma-derived plasmin. Because of their unique biochemistry, including fibrin-binding properties and rapid inhibition by alpha(2)-antiplasmin, both native plasmin and a simplified deletion mutant of plasmin are potentially safe and effective direct thrombolytic agents for various thrombotic conditions. Further studies evaluating the in-vivo pharmacologic safety and clinical efficacy of this simplified plasmin (i.e. Delta[K2-K5]Pm) are warranted.
Thrombosis Research | 2008
Valery Novokhatny
The physiological or pharmacological dissolution of thrombi is ultimately accomplished by the serine protease plasmin. Plasmin is derived from its precursor plasminogen in a reaction catalyzed by plasminogen activators (PAs) such as tissue-type plasminogen activator (tPA). In the middle of the last century, plasmin was investigated as a potential thrombolytic agent. However, technical obstacles led to the abandonment of this agent, and by the 1970s PAs had become the standard of care for pharmacological management of various thrombotic conditions. Talecris Biotherapeutics has developed a methodology to prepare the plasmin product (Human) TAL-05-00018 that is rendered inactive by low pH (pH 3.0-4.0) until it is delivered directly to the neutral environment of a thrombus by catheter-assisted administration. TAL-05-00018 undergoes a rigorous manufacturing process to ensure a final product free from unactivated plasminogen, streptokinase, enveloped and non-enveloped viruses and prion proteins; generating an extremely high-purity product with a shelf life of three years at ambient temperature. TAL-05-00018 has shown promise in in vitro and pre-clinical studies, and in early clinical trials, demonstrating a dose-dependant reduction in clot weight that compares favorably to that seen with tPA. Several other direct thrombolytics have also been developed, including the recombinant, modified deletion mutant of plasmin TAL6003 (Talecris Biotherapeutics), which retains all the major functional attributes of full-length plasmin.
Experimental & Translational Stroke Medicine | 2012
R. Christian Crumrine; Victor J. Marder; G McLeod Taylor; Joseph C. LaManna; Constantinos P. Tsipis; Valery Novokhatny; Philip Scuderi; Stephen R. Petteway; Vikram Arora
BackgroundTissue type plasminogen activator is the only approved thrombolytic agent for the treatment of ischemic stroke. However, it carries the disadvantage of a 10-fold increase in symptomatic and asymptomatic intracranial hemorrhage. A safer thrombolytic agent may improve patient prognosis and increase patient participation in thrombolytic treatment. A novel direct-acting thrombolytic agent, Δ(K2-K5) plasmin, promising an improved safety profile was examined for safety in the snare ligature model of stroke in the rat.MethodsMale spontaneously hypertensive rats were subjected to 6 hours middle cerebral artery occlusion followed by 18 hours reflow. Beginning 1 minute before reflow, they were dosed with saline, vehicle, Δ(K2-K5) plasmin (0.15, 0.5, 1.5, and 5 mg/kg) or recombinant tissue-type plasminogen activator (10 and 30 mg/kg) by local intra-arterial infusion lasting 10 to 60 minutes. The rats were assessed for bleeding score, infarct volume, modified Bederson score and general behavioral score. In a parallel study, temporal progression of infarct volume was determined. In an in vitro study, whole blood clots from humans, canines and rats were exposed to Δ(K2-K5). Clot lysis was monitored by absorbance at 280 nm.ResultsThe main focus of this study was intracranial hemorrhage safety. Δ(K2-K5) plasmin treatment at the highest dose caused no more intracranial hemorrhage than the lowest dose of recombinant tissue type plasminogen activator, but showed at least a 5-fold superior safety margin. Secondary results include: temporal infarct volume progression shows that the greatest expansion of infarct volume occurs within 2–3 hours of middle cerebral artery occlusion in the spontaneously hypertensive rat. A spike in infarct volume was observed at 6 hours ischemia with reflow. Δ(K2-K5) plasmin tended to reduce infarct volume and improve behavior compared to controls. In vitro data suggests that Δ(K2-K5) plasmin is equally effective at lysing clots from humans, canines and rats.ConclusionsThe superior intracranial hemorrhage safety profile of the direct-acting thrombolytic Δ(K2-K5) plasmin compared with recombinant tissue type plasminogen activator makes this agent a good candidate for clinical evaluation in the treatment of acute ischemic stroke.
Blood Coagulation & Fibrinolysis | 2007
Agnieszka Banbula; Thomas P. Zimmerman; Valery Novokhatny
Stabilized, active plasmin is a novel thrombolytic for direct delivery to clots. Although it is known that protease inhibitors in plasma inhibit plasmin, the amount of plasmin that can be added to plasma/blood before free plasmin is observed is not clear. Determination of free plasmin activity in plasma using chromogenic substrates represents a challenge due to false-positive signals from plasmin entrapped by α2-macroglobulin. Size-exclusion chromatography was used to separate the plasmin–α2-macroglobulin complex from uninhibited, free plasmin. In this in-vitro study, exogenous plasmin is effectively inhibited up to 2.4 μmol/l after 5-min incubation with plasma at 37°C. Initially, plasmin was consumed predominantly by α2-antiplasmin up to 1.2 μmol/l plasmin. Following exhaustion of α2-antiplasmin, plasmin was further consumed by α2-macroglobulin up to 2.4 μmol/l plasmin added to human plasma. Whole human blood was found to have an increased inhibitory capacity over that of plasma; free plasmin activity could be measured only above 3.8 μmol/l added plasmin. In conclusion, several mechanisms exist that control plasmin activity in human blood; in addition to α2-antiplasmin and α2-macroglobulin, blood cells contribute to the inhibition of exogenously administered plasmin. These in-vitro results indicate that doses of plasmin up to approximately 12 mg/kg in humans can be completely inactivated by blood.
Thrombosis Research | 2014
Nina Bizjak; Franci Bajd; Jernej Vidmar; Aleš Blinc; Maja Pohar Perme; Victor J. Marder; Valery Novokhatny; Igor Serša
INTRODUCTION Plasmin is a direct-acting thrombolytic agent with a favorable safety profile upon intra-arterial delivery in pre-clinical and phase I studies. However, the thrombolytic efficacy of plasmin, relative to that of rt-PA, remains to be established. We have compared the dynamics of clot lysis with plasmin or rt-PA in an in vitro perfusion system, in which thrombolytic agent is administered locally, allowed to induce lysis for short intervals, then washed with plasma in a re-circulation circuit. MATERIALS AND METHODS Whole blood human clots were prepared in observation chambers, exposed to plasmin or rt-PA at equimolar concentrations (1.2/1.0, 1.8/1.5 and 2.4/2.0 mg/ml) for measured intervals of time, followed by perfusion with human plasma. Clot size was monitored by digital analysis of sequential photographs obtained through an optical microscope. RESULTS Plasma perfusion after incubation with thrombolytic agent rapidly removed superficial clot fragments. This initial decrease in clot size was greater with plasmin than with rt-PA when tested at the highest concentrations of agent (0.63 ± 0.11 vs. 0.30 ± 0.11, p=0.001 for clots with non-cross-linked fibrin and 0.53 ± 0.15 vs. 0.14 ± 0.15, p=0.02, for clots with cross-linked-fibrin). Subsequent clot lysis during plasma flow was greater after prior incubation with rt-PA. Longer incubation times of plasmin resulted in larger portions of the clot being washed free. Repeated plasmin incubations and plasma perfusions of a clot successfully induced stepwise reductions in clot size. CONCLUSIONS Initial clot lysis is greater with direct exposure using plasmin than rt-PA. During washout and circulation with plasma, rt-PA induced continued clot lysis, while plasmin lysis was curtailed, presumably because of plasmin inhibition.
Thrombosis and Haemostasis | 2001
Victor J. Marder; Kyle A. Landskroner; Valery Novokhatny; Thomas P. Zimmerman; Mansze Kong; Joel J. Kanouse; Gary J. Jesmok
Blood | 2003
Daphne Stewart; Mansze Kong; Valery Novokhatny; Gary J. Jesmok; Victor J. Marder
Blood | 2004
Valeryi K. Lishko; Valery Novokhatny; Valentin P. Yakubenko; Helen V. Skomorovska-Prokvolit; Tatiana P. Ugarova
Archive | 2000
Rita T Bradley; Scott A Cook; Christopher A. Dadd; Jonathan D Kent; Marina N. Korneyeva; Valery Novokhatny; James Rebbeor; Christopher J. Stenland; Jonathan S. Strauss; Jarrett C. Terry; Jeffrey A. Yuziuk
Trends in Pharmacological Sciences | 2004
Valery Novokhatny; G. J. Jesmok; Kyle A. Landskroner; Victor J. Marder; Thomas P. Zimmerman