Valter Agosti
Magna Græcia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Valter Agosti.
Cell | 2013
Georgina M. Ellison; Carla Vicinanza; Andrew Smith; Iolanda Aquila; Angelo Leone; Cheryl D. Waring; Beverley J. Henning; Giuliano Giuseppe Stirparo; Roberto Papait; Marzia Scarfò; Valter Agosti; Giuseppe Viglietto; Gianluigi Condorelli; Ciro Indolfi; Sergio Ottolenghi; Daniele Torella; Bernardo Nadal-Ginard
The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage.
Journal of the American College of Cardiology | 2011
Georgina M. Ellison; Daniele Torella; Santo Dellegrottaglie; Claudia Pérez-Martínez; Armando Pérez de Prado; Carla Vicinanza; Saranya Purushothaman; Valentina Galuppo; Claudio Iaconetti; Cheryl D. Waring; Andrew Smith; Michele Torella; Carlos Cuellas Ramón; José M. Gonzalo-Orden; Valter Agosti; Ciro Indolfi; Manuel Galiñanes; Felipe Fernández-Vázquez; Bernardo Nadal-Ginard
OBJECTIVES The purpose of this study was to test the ability of insulin-like growth factor (IGF)-1/hepatocyte growth factor (HGF) to activate resident endogenous porcine cardiac stem/progenitor cells (epCSCs) and to promote myocardial repair through a clinically applicable intracoronary injection protocol in a pig model of myocardial infarction (MI) relevant to human disease. BACKGROUND In rodents, cardiac stem/progenitor cell (CSC) transplantation as well as in situ activation through intramyocardial injection of specific growth factors has been shown to result in myocardial regeneration after acute myocardial infarction (AMI). METHODS Acute MI was induced in pigs by a 60-min percutaneous transluminal coronary angiography left anterior descending artery occlusion. The IGF-1 and HGF were co-administered through the infarct-related artery in a single dose (ranging from 0.5 to 2 μg HGF and 2 to 8 μg IGF-1) 30 min after coronary reperfusion. Pigs were sacrificed 21 days later for dose-response relationship evaluation by immunohistopathology or 2 months later for cardiac function evaluation by cardiac magnetic resonance imaging. RESULTS The IGF-1/HGF activated c-kit positive-CD45 negative epCSCs and increased their myogenic differentiation in vitro. The IGF-1/HGF, in a dose-dependent manner, improved cardiomyocyte survival, and reduced fibrosis and cardiomyocyte reactive hypertrophy. It significantly increased c-kit positive-CD45 negative epCSC number and fostered the generation of new myocardium (myocytes and microvasculature) in infarcted and peri-infarct/border regions at 21 and 60 days after AMI. The IGF-1/HGF reduced infarct size and improved left ventricular function at 2 months after AMI. CONCLUSIONS In an animal model of AMI relevant to the human disease, intracoronary administration of IGF-1/HGF is a practical and effective strategy to reduce pathological cardiac remodeling, induce myocardial regeneration, and improve ventricular function.
Nature Protocols | 2014
Andrew Smith; Fiona C. Lewis; Iolanda Aquila; Cheryl D. Waring; Aurora Nocera; Valter Agosti; Bernardo Nadal-Ginard; Daniele Torella; Georgina M. Ellison
This protocol describes the isolation of endogenous c-Kit (also known as CD117)-positive (c-Kit+), CD45-negative (CD45−) cardiac stem cells (eCSCs) from whole adult mouse and rat hearts. The heart is enzymatically digested via retrograde perfusion of the coronary circulation, resulting in rapid and extensive breakdown of the whole heart. Next, the tissue is mechanically dissociated further and cell fractions are separated by centrifugation. The c-Kit+CD45− eCSC population is isolated by magnetic-activated cell sorting technology and purity and cell numbers are assessed by flow cytometry. This process takes ∼4 h for mouse eCSCs or 4.5 h for rat eCSCs. We also describe how to characterize c-Kit+CD45− eCSCs. The c-Kit+CD45− eCSCs exhibit the defining characteristics of stem cells: they are self-renewing, clonogenic and multipotent. This protocol also describes how to differentiate eCSCs into three main cardiac lineages: functional, beating cardiomyocytes, smooth muscle, and endothelial cells. These processes take 17–20 d.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Daniele Torella; Cosimo Gasparri; Georgina M. Ellison; Antonio Curcio; Angelo Leone; Carla Vicinanza; Valentina Galuppo; Isabella Mendicino; Walter Sacco; Iolanda Aquila; Francesca C Surace; Maria Luposella; Gilda Stillo; Valter Agosti; Claudia Cosentino; Enrico V. Avvedimento; Ciro Indolfi
cAMP inhibits proliferation in most cell types, triggering different and sometimes opposing molecular pathways. p85alpha (phosphatidylinositol 3-kinase regulatory subunit) is phosphorylated by cAMP/PKA in certain cell lineages, but its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are unknown. In the present study, we evaluated 1) the role of p85alpha in the integration of cAMP/PKA-dependent signaling on the regulation of VSMC and EC growth in vitro; and 2) the effects of PKA-modified p85alpha on neointimal hyperplasia and endothelial healing after balloon injury in vivo. Plasmid constructs carrying wild-type and PKA-modified p85alpha were employed in VSMCs and ECs in vitro and after balloon injury in rat carotid arteries in vivo. cAMP/PKA reduced VSMC proliferation through p85alpha phosphorylation. Transfected PKA-activated p85alpha binds p21ras, reducing ERK1/2 activation and VSMC proliferation in vitro. In contrast, EC proliferation inhibition by cAMP is independent from PKA modification of p85alpha and ERK1/2 inhibition; indeed, PKA-activated p85alpha did not inhibit per se ERK1/2 activation and proliferation in ECs in vitro. Interestingly, cAMP reduced both VSMC and EC apoptotic death through p85alpha phosphorylation. Accordingly, PKA-activated p85alpha triggered Akt activation, reducing both VSMC and EC apoptosis in vitro. Finally, compared with controls, vascular gene transfer of PKA-activated p85alpha significantly reduced neointimal formation after balloon injury in rats, without inhibiting endothelial regeneration of the injured arterial segment. In conclusions, PKA-activated p85alpha integrates cAMP/PKA signaling differently in VSMCs and ECs. By reducing neointimal hyperplasia without inhibiting endothelial regeneration, it exerts a protective effect against restenosis after balloon injury.
Oncogene | 2013
Rosario Amato; Domenica Scumaci; Lucia D'Antona; R Iuliano; M Menniti; M Di Sanzo; Maria Concetta Faniello; E Colao; P Malatesta; A Zingone; Valter Agosti; Francesco Costanzo; A M Mileo; Marco G. Paggi; Florian Lang; Giovanni Cuda; Patrizia Lavia; Nicola Perrotti
The serum- and glucocorticoid-regulated kinase (Sgk1) is essential for hormonal regulation of epithelial sodium channel-mediated sodium transport and is involved in the transduction of growth factor-dependent cell survival and proliferation signals. Growing evidence now points to Sgk1 as a key element in the development and/or progression of human cancer. To gain insight into the mechanisms through which Sgk1 regulates cell proliferation, we adopted a proteomic approach to identify up- or downregulated proteins after Sgk1-specific RNA silencing. Among several proteins, the abundance of which was found to be up- or downregulated upon Sgk1 silencing, we focused our attention of RAN-binding protein 1 (RANBP1), a major effector of the GTPase RAN. We report that Sgk1-dependent regulation of RANBP1 has functional consequences on both mitotic microtubule activity and taxol sensitivity of cancer cells.
ACS Chemical Biology | 2012
Francesco Paduano; Francesco Ortuso; Pietro Campiglia; Cinzia Raso; Enrico Iaccino; Marco Gaspari; Eugenio Gaudio; Graziella Mangone; Alfonso Carotenuto; Anna Bilotta; Domenico Narciso; Camillo Palmieri; Valter Agosti; Anna Artese; Isabel Gomez-Monterrey; Marina Sala; Giovanni Cuda; Rodolfo Iuliano; Nicola Perrotti; Giuseppe Scala; Giuseppe Viglietto; Stefano Alcaro; Carlo M. Croce; Ettore Novellino; Alfredo Fusco; Francesco Trapasso
PTPRJ is a receptor-type protein tyrosine phosphatase whose expression is strongly reduced in the majority of investigated cancer cell lines and tumor specimens. PTPRJ negatively interferes with mitogenic signals originating from several oncogenic receptor tyrosine kinases, including HGFR, PDGFR, RET, and VEGFR-2. Here we report the isolation and characterization of peptides from a random peptide phage display library that bind and activate PTPRJ. These agonist peptides, which are able to both circularize and form dimers in acqueous solution, were assayed for their biochemical and biological activity on both human cancer cells and primary endothelial cells (HeLa and HUVEC, respectively). Our results demonstrate that binding of PTPRJ-interacting peptides to cell cultures dramatically reduces the extent of both MAPK phosphorylation and total phosphotyrosine levels; conversely, they induce a significant increase of the cell cycle inhibitor p27(Kip1). Moreover, PTPRJ agonist peptides both reduce proliferation and trigger apoptosis of treated cells. Our data indicate that peptide agonists of PTPRJ positively modulate the PTPRJ activity and may lead to novel targeted anticancer therapies.
PLOS ONE | 2013
Carmela De Marco; Nicola Rinaldo; Paola Bruni; Carmine Malzoni; Fulvio Zullo; Fernanda Fabiani; Simona Losito; Marianna Scrima; Federica Zito Marino; Renato Franco; Alfina Quintiero; Valter Agosti; Giuseppe Viglietto
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is activated in multiple cancers including ovarian carcinoma (OC). However, the relative contribution of the single components within the PI3K pathway to AKT activation in OC is still unclear. We examined 98 tumor samples from Italian OC patients for alterations in the members of the PI3K pathway. We report that AKT is significantly hyperactive in OC compared to normal tissue (n = 93; p<0.0001) and that AKT activation is preferentially observed in the elderly (>58 years old; n = 93; p<0.05). The most frequent alteration is the overexpression of the p110α catalytic subunit of PI3K (63/93, ∼68%); less frequent alterations comprise the loss of PTEN (24/89, 27%) and the overexpression of AKT1 (18/96, 19%) or AKT2 (11/88,12.5%). Mutations in the PIK3CA or KRAS genes were detected at lower frequency (12% and 10%, respectively) whereas mutations in AKT1 or AKT2 genes were absent. Although many tumors presented a single lesion (28/93, of which 23 overexpressed PIK3CA, 1 overexpressed AKT and 4 had lost PTEN), many OC (35/93) presented multiple alterations within the PI3K pathway. Apparently, aberrant PI3K signalling was mediated by activation of the canonical downstream AKT-dependent mTOR/S6K1/4EBP1 pathway and by regulation of expression of oncogenic transcription factors that include HMGA1, JUN-B, FOS and MYC but not by AKT-independent activation of SGK3. FISH analysis indicated that gene amplification of PIK3CA, AKT1 and AKT2 (but not of PI3KR1) and the loss of PTEN are common and may account for changes in the expression of the corresponding proteins. In conclusion, our results indicate that p110α overexpression represents the most frequent alteration within the PI3K/AKT pathway in OC. However, p110α overexpression may not be sufficient to activate AKT signalling and drive ovarian tumorigenesis since many tumors overexpressing PI3K presented at least one additional alteration.
FEBS Journal | 2013
Francesco Paduano; Vincenzo Dattilo; Domenico Narciso; Anna Bilotta; Eugenio Gaudio; Miranda Menniti; Valter Agosti; Camillo Palmieri; Nicola Perrotti; Alfredo Fusco; Francesco Trapasso; Rodolfo Iuliano
Expression of PTPRJ, which is a ubiquitous receptor‐type protein tyrosine phosphatase, is significantly reduced in a vast majority of human epithelial cancers and cancer cell lines (i.e. colon, lung, thyroid, mammary and pancreatic tumours). A possible role for microRNAs (miRNAs) in the negative regulation of PTPRJ expression has never been investigated. In this study, we show that overexpression of microRNA‐328 (miR‐328) decreases PTPRJ expression in HeLa and SKBr3 cells. Further investigations demonstrate that miR‐328 acts directly on the 3′UTR of PTPRJ, resulting in reduced mRNA levels. Luciferase assay and site‐specific mutagenesis were used to identify a functional miRNA response element in the 3′UTR of PTPRJ. Expression of miR‐328 significantly enhances cell proliferation in HeLa and SKBr3 cells, similar to the effects of downregulation of PTPRJ with small interfering RNA. Additionally, in HeLa cells, the proliferative effect of miR‐328 was not observed when PTPRJ was silenced with small interfering RNA; conversely, restoration of PTPRJ expression in miR‐328‐overexpressing cells abolished the proliferative activity of miR‐328. In conclusion, we report the identification of miR‐328 as an important player in the regulation of PTPRJ expression, and we propose that the interaction of miR‐328 with PTPRJ is responsible for miR‐328‐dependent increase of epithelial cell proliferation.
Cancer Biology & Therapy | 2014
Giulia Marvaso; Agnese Barone; Nicola Amodio; Lavinia Raimondi; Valter Agosti; Emanuela Altomare; Valerio Scotti; Angela Lombardi; Roberto Bianco; Cataldo Bianco; Michele Caraglia; Pierfrancesco Tassone; Pierosandro Tagliaferri
Radiotherapy is one of the most effective therapeutic strategies for breast cancer patients, although its efficacy may be reduced by intrinsic radiation resistance of cancer cells. Recent investigations demonstrate a link between cancer cell radio-resistance and activation of sphingosine kinase (SphK1), which plays a key role in the balance of lipid signaling molecules. Sphingosine kinase (SphK1) activity can alter the sphingosine-1-phosphate (S1P)/ceramide ratio leading to an imbalance in the sphingolipid rheostat. Fingolimod (FTY720) is a novel sphingosine analog and a potent immunosuppressive drug that acts as a SphK1 antagonist, inhibits the growth, and induces apoptosis in different human cancer cell lines. We sought to investigate the in vitro radiosensitizing effects of FTY720 on the MDA-MB-361 breast cancer cell line and to assess the effects elicited by radiation and FTY720 combined treatments. We found that FTY720 significantly increased anti-proliferative and pro-apoptotic effects induced by a single dose of ionizing radiation while causing autophagosome accumulation. At the molecular level, FTY720 significantly potentiated radiation effects on perturbation of signaling pathways involved in regulation of cell cycle and apoptosis, such as PI3K/AKT and MAPK. In conclusion, our data highlight a potent radiosensitizing effect of FTY720 on breast cancer cells and provide the basis of novel therapeutic strategies for breast cancer treatment.
Journal of Proteome Research | 2011
Maddalena Di Sanzo; Marco Gaspari; Roberta Misaggi; Francesco Romeo; Lucia Falbo; Carmela De Marco; Valter Agosti; Barbara Quaresima; Tullio Barni; Giuseppe Viglietto; Martin R. Larsen; Giovanni Cuda; Francesco Costanzo; Maria Concetta Faniello
Ferritin, the major intracellular iron-storage protein, is made of 24 subunits of two types, H and L. Besides regulating intracellular iron homeostasis, it has been found that ferritin, in particular the H subunit (FHC), is involved in different biological events such as cell differentiation and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled by the FHC. We identified about 200 differentially expressed proteins and classified them in clusters on the basis of their functions, as proteins involved in metabolic processes, cell adhesion, migration, and proliferation processes. Some of them have captured our attention because of their involvement in metabolic pathways related to tumor progression and metastasis. In vitro assays confirmed that the FHC-silenced MM07(m) cells are characterized by a decreased growth activity, a reduced invasiveness, and a reduced cell adhesion capability. Moreover, nude mice (CD1 nu/nu), subcutaneously injected with FHC-silenced MM07(m) cells, showed a remarkable 4-fold reduction of their tumor growth capacity compared to those who received the FHC-unsilenced MM07(m) counterpart. In conclusion, these data indicate that gene silencing technology, coupled to proteomic analysis, is a powerful tool for a better understanding of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma.