Vamsi K. Moparthi
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vamsi K. Moparthi.
Plant Journal | 2010
Erik Alexandersson; Jonas Åh Danielson; Johan Råde; Vamsi K. Moparthi; Magnus Fontes; Per Kjellbom; Urban Johanson
Aquaporins facilitate water transport over cellular membranes, and are therefore believed to play an important role in water homeostasis. In higher plants aquaporin-like proteins, also called major intrinsic proteins (MIPs), are divided into five subfamilies. We have previously shown that MIP transcription in Arabidopsis thaliana is generally downregulated in leaves upon drought stress, apart from two members of the plasma membrane intrinsic protein (PIP) subfamily, AtPIP1;4 and AtPIP2;5, which are upregulated. In order to assess whether this regulation is general or accession-specific we monitored the gene expression of all PIPs in five Arabidopsis accessions. The overall drought regulation of PIPs was well conserved for all five accessions tested, suggesting a general and fundamental physiological role of this drought response. In addition, significant differences among accessions were identified for transcripts of three PIP genes. Principal component analysis showed that most of the PIP transcriptional variation during drought stress could be explained by one variable linked to leaf water content. Promoter-GUS constructs of AtPIP1;4, AtPIP2;5 and also AtPIP2;6, which is unresponsive to drought stress, had distinct expression patterns concentrated in the base of the leaf petioles and parts of the flowers. The presence of drought stress response elements within the 1.6-kb promoter regions of AtPIP1;4 and AtPIP2;5 was demonstrated by comparing transcription of the promoter reporter construct and the endogenous gene upon drought stress. Analysis by ATTED-II and other web-based bioinformatical tools showed that several of the MIPs downregulated upon drought are strongly co-expressed, whereas AtPIP1;4, AtPIP2;5 and AtPIP2;6 are not co-expressed.
Journal of Molecular Evolution | 2011
Vamsi K. Moparthi; Cecilia Hägerhäll
The NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron–sulfur cluster prosthetic groups. A complex I-homologous enzyme found in some archaea contains an F420 dehydrogenase subunit denoted as FpoF rather than the N-module. In the present study, all currently available whole genome sequences were used to survey the occurrence of the different types of complex I in the different kingdoms of life. Notably, the 11-subunit version of complex I was found to be widely distributed, both in the archaeal and in the eubacterial kingdoms, whereas the 14-subunit classical complex I was found only in certain eubacterial phyla. The FpoF-containing complex I was present in Euryarchaeota but not in Crenarchaeota, which contained the 11-subunit complex I. The 11-subunit enzymes showed a primary sequence variability as great or greater than the full-size 14-subunit complex I, but differed distinctly from the membrane-bound hydrogenases. We conclude that this type of compact 11-subunit complex I is ancestral to all present-day complex I enzymes. No designated partner protein, acting as an electron delivery device, could be found for the compact version of complex I. We propose that the primordial complex I, and many of the present-day 11-subunit versions of it, operate without a designated partner protein but are capable of interaction with several different electron donor or acceptor proteins.
Biochimica et Biophysica Acta | 2011
Vamsi K. Moparthi; Brijesh Kumar; Cecilie Mathiesen; Cecilia Hägerhäll
The complex I subunits NuoL, NuoM and NuoN are homologous to two proteins, MrpA and MrpD, from one particular class of Na+/H+ antiporters. In many bacteria MrpA and MrpD are encoded by an operon comprising 6-7 conserved genes. In complex I these protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Deletion of either mrpA or mrpD from the Bacillus subtilis chromosome resulted in a Na+ and pH sensitive growth phenotype. The deletion strains could be complemented in trans by their respective Mrp protein, but expression of MrpA in the B. subtilis ΔmrpD strain and vice versa did not improve growth at pH 7.4. This corroborates that the two proteins have unique specific functions. Under the same conditions NuoL could rescue B. subtilis ΔmrpA, but improved the growth of B. subtilis ΔmrpD only slightly. NuoN could restore the wild type properties of B. subtilis ΔmrpD, but had no effect on the ΔmrpA strain. Expression of NuoM did not result in any growth improvement under these conditions. This reveals that the complex I subunits NuoL, NuoM and NuoN also demonstrate functional specializations. The simplest explanation that accounts for all previous and current observations is that the five homologous proteins are single ion transporters. Presumably, MrpA transports Na+ whereas MrpD transports H+ in opposite directions, resulting in antiporter activity. This hypothesis has implications for the complex I functional mechanism, suggesting that one Na+ channel, NuoL, and two H+ channels, NuoM and NuoN, are present.
Biochimica et Biophysica Acta | 2014
Vamsi K. Moparthi; Brijesh Kumar; Yusra Al-Eryani; Eva Sperling; Kamil Górecki; Torbjörn Drakenberg; Cecilia Hägerhäll
NADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD. In complex I, these ion transporter protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Using a model system, consisting of Bacillus subtilis MrpA and MrpD deletion strains and a low copy expression plasmid, it was recently demonstrated that NuoN can rescue the strain deleted for MrpD but not that deleted for MrpA, whereas the opposite tendency was seen for NuoL. This demonstrated that the MrpA-type and MrpD-type proteins have unique functional specializations. In this work, the corresponding antiporter-like protein subunits from the smaller enzymes evolutionarily related to complex I were tested in the same model system. The subunits from 11-subunit complex I from Bacillus cereus behaved essentially as those from full size complex I, corroborating that this enzyme should be regarded as a bona fide complex I. The hydrogenase-3 and hydrogenase-4 antiporter-like proteins on the other hand, could substitute equally well for MrpA or MrpD at pH7.4, suggesting that these enzymes have intermediate forms of the antiporter-like proteins, which seemingly lack the functional specificity.
Photosynthesis Research | 2015
Sandeep B. Gaudana; Jan Zarzycki; Vamsi K. Moparthi; Cheryl A. Kerfeld
Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci:
Protein Science | 2010
Tobias Gustavsson; Maria Trane; Vamsi K. Moparthi; Egle Miklovyte; Lavanya Moparthi; Kamil Górecki; Thom Leiding; Sindra Peterson Årsköld; Cecilia Hägerhäll
Archive | 2012
Vamsi K. Moparthi; Cecilia Hägerhäll
{\text{HCO}}_{3}^{ - }
FEBS Letters | 2013
Egle Virzintiene; Vamsi K. Moparthi; Yusra Al-Eryani; Leonard T. Shumbe; Kamil Górecki; Cecilia Hägerhäll
FEBS Journal | 2010
Bala Kumar; Vamsi K. Moparthi; Cecilie Mathiesen; Cecilia Hägerhäll
HCO3- and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.
Biochimica et Biophysica Acta | 2012
Eva Sperling; Vamsi K. Moparthi; Brijesh Kumar; Yusra Al-Eryani; Egle Virzintiene; Cecilia Hägerhäll
Overproduction of membrane proteins can be a cumbersome task, particularly if high yields are desirable. NADH:quinone oxidoreductase (Complex I) contains several very large membrane‐spanning protein subunits that hitherto have been impossible to express individually in any appreciable amounts in Escherichia coli. The polypeptides contain no prosthetic groups and are poorly antigenic, making optimization of protein production a challenging task. In this work, the C‐terminal ends of the Complex I subunits NuoH, NuoL, NuoM, and NuoN from E. coli Complex I and the bona fide antiporters MrpA and MrpD were genetically fused to the cytochrome c domain of Bacillus subtilis cytochrome c550. Compared with other available fusion‐protein tagging systems, the cytochrome c has several advantages. The heme is covalently bound, renders the proteins visible by optical spectroscopy, and can be used to monitor, quantify, and determine the orientation of the polypeptides in a plethora of experiments. For the antiporter‐like subunits NuoL, NuoM, and NuoN and the real antiporters MrpA and MrpD, unprecedented amounts of holo‐cytochrome fusion proteins could be obtained in E. coli. The NuoHcyt polypeptide was also efficiently produced, but heme insertion was less effective in this construct. The cytochrome c550 domain in all the fusion proteins exhibited normal spectra and redox properties, with an Em of about +170 mV. The MrpA and MrpD antiporters remained functional after being fused to the cytochrome c‐tag. Finally, a his‐tag could be added to the cytochrome domain, without any perturbations to the cytochrome properties, allowing efficient purification of the overexpressed fusion proteins.