van Harry Goor
University Medical Center Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by van Harry Goor.
Gastroenterology | 1999
Plm Jansen; S Strautnieks; Emmanuel Jacquemin; Michelle Hadchouel; Etienne Sokal; Gjej Hooiveld; Jh Koning; A. de Jager-Krikken; Folkert Kuipers; Frans Stellaard; Cma Bijleveld; Annette S. H. Gouw; van Harry Goor; Richard Thompson; Michael Müller
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis (PFIC), an inherited liver disease of childhood, is characterized by cholestasis and either normal or increased serum gamma-glutamyltransferase activity. Patients with normal gamma-glutamyltransferase activity have mutations of the FIC1 locus on chromosome 18q21 or mutations of the BSEP gene on chromosome 2q24. Also, patients with bile acid synthesis defects have low gamma-glutamyltransferase activity. We investigated expression of the bile salt export pump (BSEP) in liver samples from patients with a PFIC phenotype and correlated this with BSEP gene mutations. METHODS BSEP and multidrug resistance protein 2 (MRP2) expressions were studied by immunohistochemistry in liver specimens of 28 patients and BSEP gene mutation analysis in 19 patients. Bile salt kinetics were studied in 1 patient. RESULTS Sixteen of 28 liver samples showed no canalicular BSEP staining. Staining for MRP2 showed a normal canalicular pattern in all but 1 of these samples. Ten of 19 patients showed BSEP gene mutations; BSEP protein expression was lacking in all 10 patients. No mutations were found in 9 of 19 patients, and in all except 1, BSEP protein expression was normal. Bile salt concentration in bile of BSEP-negative/MRP2-positive PFIC patients was 0.2 +/- 0.2 mmol/L (n = 9; <1% of normal) and in BSEP-positive PFIC patients 18.1 +/- 9.9 mmol/L (n = 3; 40% of normal). The kinetic study confirmed the dramatic decrease of bile salt secretion in BSEP-negative patients. CONCLUSIONS The findings show a close correlation between BSEP gene mutations and canalicular BSEP expression. Biliary secretion of bile salts is greatly reduced in BSEP-negative patients.
The Journal of Pathology | 2007
Inge Hamming; M. E. Cooper; Bart L. Haagmans; Nigel M. Hooper; Ron Korstanje; A. D. M. E. Osterhaus; Wim Timens; Anthony J. Turner; Gerarda Navis; van Harry Goor
The renin–angiotensin–aldosterone system (RAAS) is a key regulator of systemic blood pressure and renal function and a key player in renal and cardiovascular disease. However, its (patho)physiological roles and its architecture are more complex than initially anticipated. Novel RAAS components that may add to our understanding have been discovered in recent years. In particular, the human homologue of ACE (ACE2) has added a higher level of complexity to the RAAS. In a short period of time, ACE2 has been cloned, purified, knocked‐out, knocked‐in; inhibitors have been developed; its 3D structure determined; and new functions have been identified. ACE2 is now implicated in cardiovascular and renal (patho)physiology, diabetes, pregnancy, lung disease and, remarkably, ACE2 serves as a receptor for SARS and NL63 coronaviruses. This review covers available information on the genetic, structural and functional properties of ACE2. Its role in a variety of (patho)physiological conditions and therapeutic options of modulation are discussed. Copyright
American Journal of Physiology-renal Physiology | 2009
Wynand B.W.H. Melenhorst; Lydia Visser; Albertus Timmer; M. C. van den Heuvel; Coen A. Stegeman; van Harry Goor
A disintegrin and metalloproteinase (ADAM)17 sheds growth factors from the cell membrane, including epidermal growth factor receptor (EGFR) ligand transforming growth factor (TGF)-alpha. In mice, angiotensin II infusion induces renal fibrosis via ADAM17-mediated TGF-alpha shedding and subsequent EGFR activation. Pharmacological ADAM17 inhibition reduced renal fibrotic lesions and improved renal function, positioning ADAM17 as a promising target of intervention in renal disease. We studied ADAM17 expression in the human kidney. ADAM17 mRNA was constitutively expressed in normal adult kidneys, with highest expression in distal tubules. In human renal disease, ADAM17 was de novo expressed in proximal tubules, peritubular capillaries, and glomerular mesangium and upregulated in podocytes. Glomerular mesangial and endothelial ADAM17 were associated with mesangial matrix expansion, focal glomerulosclerosis, and glomerular macrophage infiltration (P < 0.01). Peritubular capillary and proximal tubular ADAM17 were associated with interstitial fibrosis and interstitial macrophage infiltration (P < 0.05). Both glomerular and interstitial ADAM17 were associated with decreased renal function (P < 0.05). In renal fibrosis, ADAM17 colocalized with TGF-alpha. Moreover, in cultured human podocytes and proximal tubular cells, pharmacological ADAM17 inhibition reduced constitutive TGF-alpha shedding by 78% (P < 0.005) and 100% (P < 0.05), respectively, and phorbol ester-induced TGF-alpha shedding by 84% (P < 0.005) and 92% (P = 0.005), respectively. Finally, ADAM17 inhibition reduced cellular proliferation. In conclusion, the ADAM17 expression pattern and its role in shedding TGF-alpha from cultured human kidney cells suggest a role in the development of fibrosis. Since EGFR signaling is implicated in renal fibrosis, targeting ADAM17 to reduce availability of EGFR ligand TGF-alpha may represent a promising way of intervention in human renal disease.
The Journal of Pathology | 2007
de Martin Borst; Jai Prakash; Wynand B.W.H. Melenhorst; M. C. van den Heuvel; Robbert J. Kok; Gerarda Navis; van Harry Goor
The transcription factor c‐Jun regulates the expression of genes involved in proliferation and inflammation in many cell types but its role in human renal disease is largely unclear. In the current study we investigated whether c‐Jun activation is associated with human renal disease and if c‐Jun activation regulates pro‐inflammatory and pro‐fibrotic genes in renal cells. Activation of c‐Jun was quantified by scoring renal expression of phosphorylated c‐Jun (pc‐Jun) in control human renal tissue and in biopsies from patients with various renal diseases (diabetic nephropathy, focal glomerulosclerosis, hypertension, IgA nephropathy, membranous glomerulopathy, minimal change disease, membranoproliferative glomerulonephritis, systemic lupus erythematosus, acute rejection, and Wegeners granulomatosis); this was correlated with parameters of renal damage. Furthermore, we studied the functional role of c‐Jun activation in human tubular epithelial cells (HK‐2) stimulated with TGF‐β. Activated c‐Jun was present in nuclei of glomerular and tubular cells in all human renal diseases, but only sporadically in controls. Across the diseases, the extent of pc‐Jun expression correlated with the degree of focal glomerulosclerosis, interstitial fibrosis, cell proliferation, kidney injury molecule‐1 (Kim‐1) expression, macrophage accumulation, and impairment of renal function. In HK‐2 cells, TGF‐β induced c‐Jun activation after 1 h (+40%, p < 0.001) and 24 h (+160%, p < 0.001). The specific c‐Jun N‐terminal kinase (JNK) inhibitor SP600125 abolished c‐Jun phosphorylation at all time points and blunted TGF‐β‐ or BSA‐induced procollagen‐1α 1 and MCP‐1 gene expression in HK‐2 cells. We conclude that in human renal disease, the transcription factor c‐Jun is activated in glomerular and tubular cells. Activation of c‐Jun may be involved in the regulation of inflammation and/or fibrosis in human renal disease. Copyright
Nephrology Dialysis Transplantation | 2011
Esther Meijer; Ron T. Gansevoort; de Paul Jong; A. van der Wal; Wouter N. Leonhard; S. R. de Krey; J. van den Born; Gemma M. Mulder; van Harry Goor; Joachim Struck; E. de Heer; Dorien J.M. Peters
BACKGROUND The renoprotective effect of vasopressin V2 receptor antagonist (V2RA) is currently being tested in a clinical trial in early autosomal dominant polycystic kidney disease (ADPKD). If efficacious, this warrants life-long treatment with V2RA, however, with associated side effects as polydipsia and polyuria. We questioned whether we could reduce the side effects without influencing the renoprotective effect by starting the treatment later in the disease or by lowering drug dosage. METHODS To investigate this, we administered V2RA OPC-31260 at a high (0.1%) and low (0.05%) dose to a tamoxifen-inducible kidney epithelium-specific Pkd1-deletion mouse model starting treatment at Day 21 (early) or 42 (advanced). After 3 and 6 weeks of treatment, we monitored physiologic and potential renoprotective effects. RESULTS Initiation of V2RA treatment at advanced stage of the disease lacked renoprotective effects and had less pronounced physiologic effects than early initiation. After 3 weeks on a high dose, cyst ratio and kidney weight were reduced versus untreated controls (18 versus 25%, P = 0.05, and 0.33 versus 0.45 g, P = 0.03, respectively). After 6 weeks of treatment, however, this did not reach significance anymore, even at a high dose (cyst ratio 24 versus 27%, P = 0.12, and kidney weight 0.55 versus 0.66 g, P = 0.38). CONCLUSIONS Our results suggest that intervention with V2RA should be instituted early in ADPKD and that it might be necessary to further increase the dosage of this drug later in the disease to decrease cyst growth.
The Journal of Pathology | 2008
Judith C. Sluimer; Jean Marie Gasc; Inge Hamming; van Harry Goor; A. Michaud; L. H. van den Akker; B. Jutten; Jack P.M. Cleutjens; A.P.J.J. Bijnens; Pierre Corvol; Mat J.A.P. Daemen; Sylvia Heeneman
Angiotensin‐converting enzyme (ACE)2 is a recently identified homologue of ACE. As ACE2 inactivates the pro‐atherogenic angiotensin II, we hypothesize that ACE2 may play a protective role in atherogenesis. The spatiotemporal localization of ACE2 mRNA and protein in human vasculature and a possible association with atherogenesis were investigated using molecular histology (in situ hybridization, immunohistochemistry). Also, the ACE : ACE2 balance was investigated using enzymatic assays. ACE2 mRNA was expressed in early and advanced human carotid atherosclerotic lesions. In addition, ACE2 protein was present in human veins, non‐diseased mammary arteries and atherosclerotic carotid arteries and expressed in endothelial cells, smooth muscle cells and macrophages. Quantitative analysis of immunoreactivity showed that total vessel wall expression of ACE and ACE2 was similar during all stages of atherosclerosis. The observed ACE2 protein was enzymatically active and activity was lower in the stable advanced atherosclerotic lesions, compared to early and ruptured atherosclerotic lesions. These results suggest a differential regulation of ACE2 activity during the progression of atherosclerosis and suggest that this novel molecule of the renin–angiotensin system may play a role in the pathogenesis of atherosclerosis. Copyright
The Journal of Pathology | 2006
Inge Hamming; Gerarda Navis; Menno Kocks; van Harry Goor
Angiotensin‐converting enzyme inhibitors (ACEi) provide renoprotection. A low sodium diet enhances their efficacy. However, the added effect of sodium restriction on proteinuria and blood pressure is not invariably associated with better preservation of renal morphology, suggesting that the combination of ACEi with a low sodium diet can elicit renal structural abnormalities. To test this hypothesis, the effects of ACEi in combination with a control (CS) or a low sodium (LS) diet were investigated in healthy rats and in adriamycin nephrotic rats. After 3 weeks of treatment, rats were sacrificed and kidneys examined for renal structural abnormalities. In healthy rats, ACEi reduced blood pressure: the fall in blood pressure was significantly greater in the ACEi/LS group. Renal morphology was normal in the ACEi/CS group but severe interstitial damage was found in the ACEi/LS group. This was associated with increased interstitial macrophage influx and up‐regulation of osteopontin, alpha‐smooth muscle actin, and collagen III expression. In addition, ACEi/LS induced an increase in the total medial area of afferent arterioles. In nephrotic rats, ACEi/LS reduced both blood pressure and proteinuria, whereas only blood pressure was reduced in the ACEi/CS group. Mild interstitial damage was present in the ACEi/CS group but, strikingly, pronounced tubulo‐interstitial abnormalities occurred in the ACEi/LS group, similar to those seen in ACEi/LS healthy rats, with similar changes in afferent arteriolar walls. In conclusion, the combination of ACEi/LS elicits pronounced renal interstitial abnormalities in healthy and nephrotic rats, despite a significant reduction of proteinuria in the latter. Considering their occurrence in healthy rats, these renal adverse effects cannot be due to specific characteristics of adriamycin nephrosis. Further studies should elucidate the mechanisms underlying these observations and their impact on long‐term renoprotection. Copyright
Placenta | 2012
Kim M. Holwerda; Eelke M. Bos; Augustine Rajakumar; C. Ris-Stalpers; M.G. van Pampus; Albertus Timmer; Johannes Erwich; Marijke M. Faas; van Harry Goor; Anna Lely
Preeclampsia, a human pregnancy specific disorder is characterized by an anti-angiogenic state. As hydrogen sulfide (H(2)S) has pro-angiogenic and anti-oxidative characteristics, we hypothesized that H(2)S levels could play a role in the pathogenesis of preeclampsia and studied the placental expression of the H(2)S-producing enzymes cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS). CBS and CSE protein are expressed in the fetal-placental endothelium and CBS only in Hofbauer cells. CBS mRNA expression is decreased (p = 0.002) in early-onset preeclampsia, while CSE mRNA is unchanged. Thus, down regulation of CBS during early-onset preeclampsia may result in less H(2)S-production and may aid in the anti-angiogenic state.
Biochimica et Biophysica Acta | 1999
Dm Minich; Rick Havinga; van Harry Goor; Frans Stellaard; Roelf Vonk; Folkert Kuipers; Henkjan J. Verkade
Decreased bile secretion into the intestine has been associated with low plasma concentrations of essential fatty acids (EFA) in humans. We studied the mechanism behind this relationship by determining the status and absorption of the major dietary EFA, linoleic acid (LA), in control and 1-week bile-diverted rats. The absorption of LA was quantified by a balance method and by measuring plasma concentrations of [13C]LA after its intraduodenal administration. Absolute and relative concentrations of LA in plasma were decreased in bile-diverted rats (P<0.01 and P<0.001, respectively). Fecal excretion of LA was increased at least 20-fold in bile-diverted rats (0.72+/-0.11 vs. 0.03+/-0.00 mmol/day; P<0.0001). Due to increased chow ingestion by bile-diverted rats, net intestinal absorption of LA was similar between bile-diverted and control rats (1.96+/-0.14 vs. 1.91+/-0.07 mmol/day, respectively; P>0.05). After intraduodenal administration of [13C]LA, plasma concentrations were approximately 3-4-fold lower in bile-diverted rats for at least 6 h (P<0.001). Plasma concentrations of both [12C]arachidonic acid and [13C]arachidonic acid were increased in bile-diverted rats (P<0.05). We conclude that decreased plasma concentrations of LA in 1-week bile-diverted rats are not due to decreased net intestinal absorption of LA, but may be related to increased metabolism of LA.
Experimental Nephrology | 2000
Fh Wapstra; Gerarda Navis; van Harry Goor; J. van den Born; Jhm Berden; de Paul Jong; de Dick Zeeuw
The gradual onset of the antiproteinuric effects of ACE inhibition suggests that structural effects on the glomerular basement membrane (GBM) may be involved in their renoprotective action. To test this hypothesis, we studied the effects of lisinopril (5 mg/kg/24 h) on proteinuria, focal glomerulosclerosis (FGS) and glomerular heparan sulfate (HS) proteoglycan (HSPG) GBM staining in rats with established Adriamycin nephrosis. Treatment was started 6 weeks after disease induction. As expected, lisinopril reduced blood pressure, proteinuria and the FGS score. In control rats, Adriamycin nephrosis was associated with significantly impaired GBM staining for both HSPG core protein (assessed from BL-31 staining) and HS staining (assessed from JM-403 staining) 12 weeks after disease induction. In rats treated with lisinopril (5 mg/kg/24 h) GBM stianing was significantly better preserved for HS as well as for HSPG core protein. These data suggest that structural effects on the GBM, improving glomerular permselectivity, may be involved in the renoprotective effects of ACE inhibition in proteinuria-induced renal damage.