Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Van W. Wong is active.

Publication


Featured researches published by Van W. Wong.


Journal of Bone and Joint Surgery, American Volume | 2003

Prolonged Storage Effects on the Articular Cartilage of Fresh Human Osteochondral Allografts

Seth K. Williams; David Amiel; Scott T. Ball; R. Todd Allen; Van W. Wong; Albert C. Chen; Robert L. Sah; William D. Bugbee

BACKGROUND Fresh osteochondral allograft transplantation is a well-established technique for the treatment of cartilage defects of the knee. It is believed that the basic paradigm of the technique is that the transplantation of viable chondrocytes maintains the articular cartilage matrix over time. Allograft tissue is typically transplanted up to forty-two days after the death of the donor, but it is unknown how the conditions and duration of storage affect the properties of fresh human osteochondral allografts. This study examined the quality of human allograft cartilage as a function of storage for a duration of one, seven, fourteen, and twenty-eight days. We hypothesized that chondrocyte viability, chondrocyte metabolic activity, and the biochemical and biomechanical properties of articular cartilage would remain unchanged after storage for twenty-eight days. METHODS Sixty osteochondral plugs were harvested from ten fresh human femoral condyles within forty-eight hours after the death of the donor and were stored in culture medium at 4 degrees C. At one, seven, fourteen, and twenty-eight days after harvest, the osteochondral plugs were analyzed for (1) viability and viable cell density by confocal microscopy, (2) proteoglycan synthesis by quantification of (35)SO(4) incorporation, (3) glycosaminoglycan content, (4) indentation stiffness, (5) compressive modulus and hydraulic permeability by static and dynamic compression testing, and (6) tensile modulus by equilibrium tensile testing. RESULTS Chondrocyte viability and viable cell density remained unchanged after storage for seven and fourteen days (p > 0.7) and then declined at twenty-eight days (p < 0.001). Proteoglycan synthesis remained unchanged at seven days (p > 0.1) and then declined at fourteen days (p < 0.01) and twenty-eight days (p < 0.001). No significant differences were detected in glycosaminoglycan content (p > 0.8), indentation stiffness (p > 0.4), compressive modulus (p > 0.05), permeability (p > 0.3), or equilibrium tensile modulus after storage for twenty-eight days (p > 0.9). CONCLUSIONS These data demonstrate that fresh human osteochondral allograft tissue stored for more than fourteen days undergoes significant decreases in chondrocyte viability, viable cell density, and metabolic activity, with preservation of glycosaminoglycan content and biomechanical properties. The cartilage matrix is preserved during storage for twenty-eight days, but the chondrocytes necessary to maintain the matrix after transplantation decreased over that time-period.


American Journal of Sports Medicine | 2005

Analysis of Stored Osteochondral Allografts at the Time of Surgical Implantation

R. Todd Allen; Catherine M. Robertson; Andrew T. Pennock; William D. Bugbee; Frederick L. Harwood; Van W. Wong; Albert C. Chen; Robert L. Sah; David Amiel

Background To date, the morphological, biochemical, and biomechanical characteristics of articular cartilage in osteochondral allografts that have been stored have not been fully described. Hypothesis Osteochondral allografts procured and stored commercially for a standard period as determined by tissue banking protocol will have compromised chondrocyte viability but preserved extracellular matrix quality. Study Design Controlled laboratory study. Methods Unused cartilage from 16 consecutive osteochondral allografts was sampled during surgery after tissue bank processing and storage. Ten grafts were examined for cell viability and viable cell density using confocal microscopy, proteoglycan synthesis via 35SO4 uptake, and glycosaminoglycan content and compared with fresh cadaveric articular cartilage. Biomechanical assessment was performed on the 6 remaining grafts by measuring the indentation stiffness of the cartilage. Results The mean storage time for the transplanted specimens was 20.3 ± 2.9 days. Chondrocyte viability, viable cell density, and 35SO4 uptake were significantly lower in allografts at implantation when compared to fresh, unstored controls, whereas matrix characteristics, specifically glycosaminoglycan content and biomechanical measures, were unchanged. In addition, chondrocyte viability in the stored allografts was preferentially decreased in the superficial zone of cartilage. Conclusion Human osteochondral allografts stored for a standard period (approximately 3 weeks) before implantation undergo decreases in cell viability, especially in the critically important superficial zone, as well as in cell density and metabolic activity, whereas matrix and biomechanical characteristics appear conserved. The exact clinical significance of these findings, however, is unknown, as there are no prospective studies examining clinical outcomes using grafts stored for extended periods. Clinical Relevance Surgeons who perform this procedure should understand the cartilage characteristics of the graft after 21 days of commercial storage in serum-free media.


American Journal of Rhinology | 2005

Tensile biomechanical properties of human nasal septal cartilage.

Jeremy D. Richmon; August B. Sage; Van W. Wong; Albert C. Chen; Christine Pan; Robert L. Sah; Deborah Watson

Background The biomechanical properties of human septal cartilage have yet to be fully defined and thereby limits our ability to compare tissue-engineered constructs to native tissue. In this study, we analyzed the tensile properties of human nasal septal cartilage with respect to axis of tension, age group, and gender. Methods Fifty-five tensile tests were run on human septal specimens obtained from 28 patients. Samples obtained in the vertical and anterior–posterior (both above and within the maxillary crest) axes were subjected to equilibrium and dynamic tensile testing. Results The average values for strength, failure strain, equilibrium modulus and dynamic modulus were not found to be significantly different with respect to axis of tension testing, age group, or gender. Tensile results for septal cartilage were as follows: equilibrium modulus 3.01 ± 0.39 MPa, dynamic modulus 4.99 ± 0.49 MPa, strength 1.90 ± 0.24 MPa, and failure strain 0.35 ± 0.03 mm/mm. Conclusion We confirm that septal cartilage has weaker tensile properties compared to articular cartilage and found no difference in strength with respect to age, gender, or axis of tension (isotropic).


Osteoarthritis and Cartilage | 2008

Wear-Lines and Split-Lines of Human Patellar Cartilage: Relation to Tensile Biomechanical Properties

Won C. Bae; Van W. Wong; Jennifer Hwang; Jennifer M. Antonacci; Gayle E. Nugent-Derfus; Megan E. Blewis; Michele M. Temple-Wong; Robert L. Sah

BACKGROUND Articular cartilage undergoes age-associated degeneration, resulting in both structural and functional biomechanical changes. At early stages of degeneration, wear-lines develop in the general direction of joint movement. With aging, cartilage exhibits a decrease in tensile modulus. The tensile modulus of cartilage has also been related to the orientation of the collagen network, as revealed by split-lines. OBJECTIVE To determine the relative contribution of wear-line and split-line orientation on the tensile biomechanical properties of human patellar cartilage from different depths. METHODS In human patellar cartilage, wear- and split-lines are aligned parallel to each other at the proximal facet, and perpendicular to each other at the medial facet. Using superficial, middle, and deep cartilage sections from these two sites, tensile samples were prepared in two orthogonal orientations. Thus, for each depth, there were four groups of samples, with their long axes were aligned either parallel or perpendicular to wear-line direction and also aligned parallel or perpendicular to split-line direction. Uniaxial tensile tests were performed to assess equilibrium and ramp moduli. RESULTS Tensile equilibrium moduli varied with wear-line orientation (P<0.05) and depth (P<0.001), in an interactive manner (P<0.05), and tended to vary with split-line orientation (P=0.16). In the superficial layer, equilibrium and ramp modulus were higher when the samples were loaded parallel to wear-lines (P<0.05). CONCLUSION These results indicate that mild wear (i.e., wear-line formation) at the articular surface has deleterious functional effects on articular cartilage and represent an early aging-associated degenerative change. The identification and recognition of functional biomechanical consequences of wear-lines are useful for planning and interpreting tensile biomechanical tests in human articular cartilage.


Journal of Biomechanics | 2016

Ex vivo loading of trussed implants for spine fusion induces heterogeneous strains consistent with homeostatic bone mechanobiology

Jason P. Caffrey; Esther Cory; Van W. Wong; Koichi Masuda; Albert C. Chen; Jessee Hunt; Timothy Ganey; Robert L. Sah

A truss structure was recently introduced as an interbody fusion cage. As a truss system, some of the connected elements may be in a state of compression and others in tension. This study aimed to quantify both the mean and variance of strut strains in such an implant when loaded in a simulated fusion condition with vertebral body or contoured plastic loading platens ex vivo. Cages were each instrumented with 78 fiducial spheres, loaded between platens (vertebral body or contoured plastic), imaged using high resolution micro-CT, and analyzed for deformation and strain of each of the 221 struts. With repeated loading of a cage by vertebral platens, the distribution (variance, indicated by SD) of strut strains widened from 50N control (4±114με, mean±SD) to 1000N (-23±273με) and 2000N (-48±414με), and between 1000N and 2000N. With similar loading of multiple cages, the strain distribution at 2000N (23±389με) increased from 50N control. With repeated loading by contoured plastic platens, induced strains at 2000N had a distribution similar to that induced by vertebral platens (84±426με). In all studies, cages exhibited increases in strut strain amplitude when loaded from 50N to 1000N or 2000N. Correspondingly, at 2000N, 59-64% of struts exhibited strain amplitudes consistent with mechanobiologically-regulated bone homeostasis. At 2000N, vertically-oriented struts exhibited deformation of -2.87±2.04μm and strain of -199±133με, indicating overall cage compression. Thus, using an ex vivo 3-D experimental biomechanical analysis method, a truss implant can have strains induced by physiological loading that are heterogeneous and of amplitudes consistent with mechanobiological bone homeostasis.


Otolaryngology-Head and Neck Surgery | 2011

Culture of Human Septal Chondrocytes in a Rotary Bioreactor

Marsha S. Reuther; Van W. Wong; Kristen K. Briggs; Angela A. Chang; Quynhhoa T. Nguyen; Barbara L. Schumacher; Koichi Masuda; Robert L. Sah; Deborah Watson

Objectives (1) To show that extracellular matrix deposition in 3-dimensional culture of human septal chondrocytes cultured in a rotary bioreactor is comparable to the deposition achieved under static culture conditions. (2) To demonstrate that the biomechanical properties of human septal chondrocytes cultured in a bioreactor are enhanced with time and are analogous to beads cultured under static culture. Study Design Prospective, basic science. Setting Research laboratory. Methods Human septal chondrocytes from 9 donors were expanded in monolayer and seeded in alginate beads. The beads were cultured in a rotary bioreactor for 21 days in media supplemented with growth factors and human serum, using static culture as the control. Biochemical and biomechanical properties of the beads were measured. Results Glycosaminoglycan (GAG) accumulation significantly increased during 2 measured time intervals, 0 to 21 days and 10 to 21 days (P < .01). No significant difference was seen between the static and bioreactor conditions. Substantial type II collagen production was demonstrated in the beads terminated at day 21 of culture in both conditions. In addition, the biomechanical properties of the beads were significantly improved at 21 days in comparison to beads from day 0. Conclusion Human septal chondrocytes cultured in alginate beads exhibit significant matrix deposition and improved biomechanical properties after 21 days. Alginate bead diameter and stiffness positively correlated with GAG and type II collagen accretion. Matrix production in beads is supported by the use of a rotary bioreactor.


Journal of Biomechanics | 2018

Biomechanics of osteochondral impact with cushioning and graft Insertion: Cartilage damage is correlated with delivered energy

Alvin W. Su; Yunchan Chen; Yao Dong; Dustin H. Wailes; Van W. Wong; Albert C. Chen; Shengqiang Cai; William D. Bugbee; Robert L. Sah

Articular cartilage is susceptible to impact injury. Impact may occur during events ranging from trauma to surgical insertion of an OsteoChondral Graft (OCG) into an OsteoChondral Recipient site (OCR). To evaluate energy density as a mediator of cartilage damage, a specialized drop tower apparatus was used to impact adult bovine samples while measuring contact force, cartilage surface displacement, and OCG advancement. When a single impact was applied to an isolated (non-inserted) OCG, force and surface displacement each rose monotonically and then declined. In each of five sequential impacts of increasing magnitude, applied to insert an OCG into an OCR, force rose rapidly to an initial peak, with minimal OCG advancement, and then to a second prolonged peak, with distinctive oscillations. Energy delivered to cartilage was confirmed to be higher with larger drop height and mass, and found to be lower with an interposed cushion or OCG insertion into an OCR. For both single and multiple impacts, the total energy density delivered to the articular cartilage correlated to damage, quantified as total crack length. The corresponding fracture toughness of the articular cartilage was 12.0 mJ/mm2. Thus, the biomechanics of OCG insertion exhibits distinctive features compared to OCG impact without insertion, with energy delivery to the articular cartilage being a factor highly correlated with damage.


Laryngoscope | 2016

Effect of hyaluronidase on tissue-engineered human septal cartilage

Deborah Watson; Marsha S. Reuther; Van W. Wong; Robert L. Sah; Koichi Masuda; Kristen K. Briggs

Structural properties of tissue‐engineered cartilage can be optimized by altering its collagen to sulfated glycosaminoglycan (sGAG) ratio with hyaluronidase. The objective was to determine if treatment of neocartilage constructs with hyaluronidase leads to increased collagen:sGAG ratios, as seen in native tissue, and improved tensile properties.


Otolaryngology-Head and Neck Surgery | 2013

Volume Expansion of Tissue Engineered Human Nasal Septal Cartilage

Marsha S. Reuther; Kristen K. Briggs; Van W. Wong; Monica K. Neuman; Koichi Masuda; Robert L. Sah; Deborah Watson

Objectives: 1) Produce autologous human septal neocartilage constructs substantially larger in size than previously produced constructs. 2) Demonstrate that volume expanded neocartilage constructs possess comparable histologic and biochemical properties to standard size constructs. 3) Show that volume expanded neocartilage constructs retain similar biomechanical properties to standard size constructs. Methods: Human septal chondrocytes from 8 donors were used to create 12mm and 24mm neocartilage constructs. These were cultured for a total of 10 weeks. Photo documentation, histologic, biochemical, and biomechanical properties were measured and compared. Results: The 24mm diameter constructs were qualitatively similar to the 12mm constructs. They possessed adequate strength and durability to be manually manipulated. Histologic analysis of the constructs demonstrated similar staining patterns in standard and volume expanded constructs. Proliferation, as measured by DNA content, was similar in 24mm and 12mm constructs. Additionally, GAG and total collagen content did not significantly differ between the two construct sizes. Biomechanical analysis of the 24mm and 12mm constructs demonstrated comparable compressive and tensile properties. Conclusions: Volume expanded human septal neocartilage constructs are qualitatively and histologically similar to standard 12mm constructs. Biochemical and biomechanical analysis of the constructs demonstrated equivalent properties. This study shows that modification of existing protocols is not required to successfully produce neocartilage constructs in larger sizes for reconstruction of more substantial craniofacial defects.


Otolaryngology-Head and Neck Surgery | 2013

Flexural Properties of Native and Tissue-Engineered Human Septal Cartilage

Jason P. Caffrey; Anton Kushnaryov; Marsha S. Reuther; Van W. Wong; Kristen K. Briggs; Koichi Masuda; Robert L. Sah; Deborah Watson

Objective To determine and compare the bending moduli of native and engineered human septal cartilage. Study Design Prospective, basic science. Setting Research laboratory. Subjects and Methods Neocartilage constructs were fabricated from expanded human septal chondrocytes cultured in differentiation medium for 10 weeks. Constructs (n = 10) and native septal cartilage (n = 5) were tested in a 3-point bending apparatus, and the bending moduli were calculated using Euler-Bernoulli beam theory. Results All samples were tested successfully and returned to their initial shape after unloading. The bending modulus of engineered constructs (0.32 ± 0.25 MPa, mean ± SD) was 16% of that of native septal cartilage (1.97 ± 1.25 MPa). Conclusion Human septal constructs, fabricated from cultured human septal chondrocytes, are more compliant in bending than native human septal tissue. The bending modulus of engineered septal cartilage can be measured, and this modulus provides a useful measure of construct rigidity while undergoing maturation relative to native tissue.

Collaboration


Dive into the Van W. Wong's collaboration.

Top Co-Authors

Avatar

Robert L. Sah

University of California

View shared research outputs
Top Co-Authors

Avatar

Albert C. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Koichi Masuda

University of California

View shared research outputs
Top Co-Authors

Avatar

Deborah Watson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won C. Bae

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge