Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vance Lemmon is active.

Publication


Featured researches published by Vance Lemmon.


Experimental Neurology | 1990

Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro

Diane M. Snow; Vance Lemmon; David A. Carrino; Arnold I. Caplan; Jerry Silver

In vivo studies of the roof plate of the spinal cord and midline optic tectum in rodent and the developing subplate in the telencephalon of the chick showed that two glycosaminoglycans, keratin sulfate and chondroitin sulfate, possibly in the proteoglycan form (KS-PG, CS-PG, or KS/CS-PG), were present at times when axons approach closely but do not invade these territories. To address the question of whether KS/CS-PG actively inhibits growth cone elongation and to determine which component(s) of the proteoglycan may be critical to this phenomenon, we used a technique employing nitrocellulose-coated petri dishes onto which stripes of various purified macromolecules were attached. Isolated E9 chick dorsal root ganglia were grown on lanes of KS/CS-PG in alteration with lanes of the growth-promoting molecule laminin (LN). Neurite outgrowth was abundant along stripes of LN. In contrast, upon encountering a stripe containing KS/CS-PG, neurites either stopped abruptly or turned and traveled along the KS/CS-PG stripe border. The effect was dependent upon the concentration of the proteoglycan with intermediate concentrations producing intermittent patterns of crossing. We mixed LN with the KS/CS-PG, where the LN was in concentrations which alone support outgrowth, and observed that the KS/CS-PG was still inhibitory when such a growth-promoting molecule was present. A 10-fold higher concentration of LN was able to overcome the inhibitory effect of the KS/CS-PG. These results suggest that the interaction of inhibitory and growth-promoting molecules can interact to produce a wide spectrum of neurite patterns ranging from complete inhibition to totally unimpeded outgrowth. Selective enzymatic removal of the KS or CS from the KS/CS-PG permitted various degrees of neurite outgrowth to occur across the previously inhibitory lanes, and digestion of both glycoaminoglycan moieties, leaving only the protein core of the molecule, resulted in a complete lack of inhibition. These assays demonstrated that KS/CS-PG is inhibitory to embryonic dorsal root ganglia neurites in vitro and that complete inhibition requires contributions from both KS and CS moieties.


Science | 2009

KLF Family Members Regulate Intrinsic Axon Regeneration Ability

Darcie L. Moore; Murray G. Blackmore; Ying Hu; Klaus H. Kaestner; John L. Bixby; Vance Lemmon; Jeffrey L. Goldberg

Containing Neuronal Exuberance In rats and mice, around the time of birth, neurons of the central nervous system switch from a growth mode and lose their ability to regenerate. Studying retinal ganglion cells of the rat, Moore et al. (p. 298; see the Perspective by Subang and Richardson) identified a gene, Krüppel-like factor-4 (KLF4), that seems to contribute to the switch. The KLF4 gene belongs to a family of related transcription factors that possess repressive or enhancing effects on axon growth. The combinatorial effect of this family of transcription factors before and after birth may fine-tune the ability of the neurons to extend axons. The regenerative capacity of mouse retinal ganglion cells after injury is regulated by the KLF family of transcription factors. Neurons in the central nervous system (CNS) lose their ability to regenerate early in development, but the underlying mechanisms are unknown. By screening genes developmentally regulated in retinal ganglion cells (RGCs), we identified Krüppel-like factor–4 (KLF4) as a transcriptional repressor of axon growth in RGCs and other CNS neurons. RGCs lacking KLF4 showed increased axon growth both in vitro and after optic nerve injury in vivo. Related KLF family members suppressed or enhanced axon growth to differing extents, and several growth-suppressive KLFs were up-regulated postnatally, whereas growth-enhancing KLFs were down-regulated. Thus, coordinated activities of different KLFs regulate the regenerative capacity of CNS neurons.


Developmental Biology | 1988

Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis

Werner Risau; Vance Lemmon

We have previously characterized monoclonal antibodies against chick brain cells. One of them (14-2B2) brightly stained all capillaries in frozen sections of chick brain. Here we show that this antibody is directed against chick fibronectin. Using this antibody and polyclonal antibodies against laminin, we have studied the development of the vascular extracellular matrix. Vasculogenesis, the development of capillaries from in situ differentiating endothelial cells, was studied in yolk sac blood islands and intraembryonic dorsal aorta. Blood islands produced high levels of fibronectin but not laminin. Early intraembryonic capillaries all expressed fibronectin but little if any laminin. The dorsal aorta of a 6-day-old chick embryo has several layers of fibronectin-producing cells, but is devoid of laminin. Laminin expression commenced at Day 8 and by Day 10 an adult-like distribution was found in the aortic vascular wall. Angiogenesis, the formation of capillaries from preexisting vessels, was studied during brain development. Capillary sprouts invading the neuroectoderm at Embryonic Day 4 migrated in a fibronectin-rich matrix devoid of laminin. Ultrastructural immunolocalization demonstrated the presence of fibronectin exclusively on the abluminal site of the endothelial cells. Beginning on Day 6, laminin codistributed with fibronectin in brain capillaries. We conclude that immature capillaries migrate and proliferate in a fibronectin-rich extracellular matrix, which is subsequently remodeled acquiring basement membrane-like characteristics. We suggest that laminin expression is an early indication of vascular maturation.


Journal of Cell Biology | 2001

Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins

Sabine Mechtersheimer; Paul Gutwein; Nancy Agmon-Levin; Alexander Stoeck; Matthias Oleszewski; Svenja Riedle; Rolf Postina; Falk Fahrenholz; Mina Fogel; Vance Lemmon; Peter Altevogt

The L1 adhesion molecule plays an important role in axon guidance and cell migration in the nervous system. L1 is also expressed by many human carcinomas. In addition to cell surface expression, the L1 ectodomain can be released by a metalloproteinase, but the biological function of this process is unknown. Here we demonstrate that membrane-proximal cleavage of L1 can be detected in tumors and in the developing mouse brain. The shedding of L1 involved a disintegrin and metalloproteinase (ADAM)10, as transfection with dominant-negative ADAM10 completely abolishes L1 release. L1-transfected CHO cells (L1-CHO) showed enhanced haptotactic migration on fibronectin and laminin, which was blocked by antibodies to αvβ5 and L1. Migration of L1-CHO cells, but not the basal migration of CHO cells, was blocked by a metalloproteinase inhibitor, indicating a role for L1 shedding in the migration process. CHO and metalloproteinase-inhibited L1-CHO cells were stimulated to migrate by soluble L1-Fc protein. The induction of migration was blocked by αvβ5-specific antibodies and required Arg-Gly-Asp sites in L1. A 150-kD L1 fragment released by plasmin could also stimulate CHO cell migration. We propose that ectodomain-released L1 promotes migration by autocrine/paracrine stimulation via αvβ5. This regulatory loop could be relevant for migratory processes under physiological and pathophysiological conditions.


Science | 2011

Microtubule Stabilization Reduces Scarring and Causes Axon Regeneration After Spinal Cord Injury

Farida Hellal; Andres Hurtado; Jörg Ruschel; Kevin C. Flynn; Claudia J. Laskowski; Martina Umlauf; Lukas C. Kapitein; Dinara Strikis; Vance Lemmon; John L Bixby; Casper C. Hoogenraad; Frank Bradke

Taxol stimulates the capacity of axons to grow after spinal cord injury. Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor–β signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.


European Journal of Human Genetics | 1995

CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1.

Erik Fransen; Vance Lemmon; G. Van Camp; Lieve Vits; Paul Coucke; Patrick J. Willems

L1 is a neuronal cell adhesion molecule with important functions in the development of the nervous system. The gene encoding L1 is located near the telomere of the long arm of the X chromosome in Xq28. We review here the evidence that several X-linked mental retardation syndromes including X-linked hydrocephalus (HSAS), MASA syndrome, X-linked complicated spastic paraparesis (SP1) and X-linked corpus callosum agenesis (ACC) are all due to mutations in the L1 gene. The inter- and intrafamilial variability in families with an L1 mutation is very wide, and patients with HSAS, MASA, SP1 and ACC can be present within the same family. Therefore, we propose here to refer to this clinical syndrome with the acronym CRASH, for Corpus callosum hypoplasia, Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus.


Journal of Biological Chemistry | 1999

Activation of the MAPK Signal Cascade by the Neural Cell Adhesion Molecule L1 Requires L1 Internalization

Andrew W. Schaefer; Hiroyuki Kamiguchi; Eric V. Wong; Carol M. Beach; Gary Landreth; Vance Lemmon

L1-mediated axon growth involves intracellular signaling, but the precise mechanisms involved are not yet clear. We report a role for the mitogen-activated protein kinase (MAPK) cascade in L1 signaling. L1 physically associates with the MAPK cascade components Raf-1, ERK2, and the previously identified p90 rsk in brain. In vitro, ERK2 can phosphorylate L1 at Ser1204 and Ser1248 of the L1 cytoplasmic domain. These two serines are conserved in the L1 family of cell adhesion molecules, also being found in neurofascin and NrCAM. The ability of ERK2 to phosphorylate L1 suggests that L1 signaling could directly regulate L1 function by phosphorylation of the L1 cytoplasmic domain. In L1-expressing 3T3 cells, L1 cross-linking can activate ERK2. Remarkably, the activated ERK localizes with endocytosed vesicular L1 rather than cell surface L1, indicating that L1 internalization and signaling are coupled. Inhibition of L1 internalization with dominant-negative dynamin prevents activation of ERK. These results show that L1-generated signals activate the MAPK cascade in a manner most likely to be important in regulating L1 intracellular trafficking.


Trends in Neurosciences | 1995

Mutations in the cell adhesion molecule LI cause mental retardation

Eric V. Wong; Susan Kenwrick; Patrick J. Willems; Vance Lemmon

Recently, studies in the usually disparate fields of human genetics and developmental neurobiology have converged to reveal that some types of human mental retardation and brain malformations are due to mutations that affect the neural cell adhesion molecule L1. L1 has a very complex biology, interacting with a variety of ligands, and functioning in migration of neurons and growth of axons. Over the past few years, it has also become clear that L1 is able to influence intracellular second messengers. The identification of a number of different mutations in L1, some of which alter the extracellular portion of the molecule, and others that change only the cytoplasmic tail, confirm that L1 is a crucial player in normal brain development. The information gained from genetic analysis of human L1 is giving new insights into how L1 functions in the formation of major axon pathways, but it also raises unanticipated questions about how L1 participates in the development of cortical and ventricular systems.


Developmental Biology | 1990

The role of cell adhesion molecules in neurite outgrowth on Müller cells

Judy Drazba; Vance Lemmon

The roles of neural cell adhesion molecule (NCAM), L1, N-cadherin, and integrin in neurite outgrowth on various substrates were studied. Antibodies against these cell surface molecules were added to explants of chick retina and the neurites from retinal ganglion cells were examined for effects of the antibodies on neurite length and fasciculation. On laminin, an anti-integrin antibody completely inhibited neurite outgrowth. The same antibody did not inhibit neurite outgrowth on polylysine or Müller cells. Antibodies to NCAM, L1, and N-cadherin did not significantly inhibit neurite outgrowth on laminin but produced significant inhibition on Müller cells. The inhibition of neurite outgrowth on glia by anti-L1 antibodies supports the hypothesis that L1 is capable of acting in a heterophilic binding mechanism. On laminin, both anti-N-cadherin and anti-L1 caused defasciculation of neurites from retinal ganglion cells, while anti-NCAM did not. None of these antibodies produced defasciculation on Müller cells. The results indicate that these three cell adhesion molecules may be very important in interactions with glia as axons grow from the retina to the tectum and may be less important in axon-axon interactions along this pathway. No evidence was found supporting the role of integrins in axon growth on Müller cells.


Journal of Neuroscience Research | 1997

Neural cell adhesion molecule L1: Signaling pathways and growth cone motility

Hiroyuki Kamiguchi; Vance Lemmon

The neural cell adhesion molecule L1 plays a key role in nervous system development including neuronal migration, neurite growth, and axonal fasciculation. L1 is expressed on most developing axons, and homophilic binding of L1 molecules on adjacent axons is likely to play a key role in axon extension. It is now well documented that a number of second‐messenger systems are involved in L1‐stimulated neurite growth in vitro. However, it is unclear how L1 homophilic or heterophilic binding trigger signals that regulate the mechanical forces that produce axon extension. In this report, we will review recent advances in understanding L1‐associated signals, L1 interactions with the cytoskeleton, and the molecular mechanisms underlying growth cone motility. J. Neurosci. Res. 49:1–8, 1997.

Collaboration


Dive into the Vance Lemmon's collaboration.

Researchain Logo
Decentralizing Knowledge