Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanda Pereira is active.

Publication


Featured researches published by Vanda Pereira.


Journal of Chromatography A | 2008

Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure

Vanda Pereira; Marisela Pontes; José S. Câmara; José Carlos Marques

This work presents a RP-HPLC method for the simultaneous quantification of free amino acids and biogenic amines in liquid food matrices and the results of the application to honey and wine samples obtained from different production processes and geographic origins. The developed methodology is based on a pre-column derivatization with o-phthaldialdehyde carried out in the sample injection loop. The compounds were separated in a Nova-Pack RP-C(18) column (150 mm x 3.9 mm, 4 microm) at 35 degrees C. The mobile phase used was a mixture of phase A: 10 mM sodium phosphate buffer (pH 7.3), methanol and tetrahydrofuran (91:8:1); and phase B: methanol and phosphate buffer (80:20), with a flow rate of 1.0 ml/min. Fluorescence detection was used at an excitation wavelength of 335 nm and an emission wavelength of 440 nm. The separation and quantification of 19 amino acids and 6 amines was carried out in a single run as their OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The method showed to be adequate for the purpose, with an average RSD of 2% for the different amino acids; detection limits varying between 0.71 mg/l (Asn) and 8.26 mg/l (Lys) and recovery rates between 63.0% (Cad) and 98.0% (Asp). The amino acids present at the highest concentration in honey and wine samples were phenylalanine and arginine, respectively. Only residual levels of biogenic amines were detected in the analysed samples.


Journal of Separation Science | 2010

HPLC-DAD methodology for the quantification of organic acids, furans and polyphenols by direct injection of wine samples.

Vanda Pereira; José S. Câmara; Juan Cacho; José Carlos Marques

This article proposes a simple and sensitive HPLC method with photo-diode array detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250x4.6 mm, 5 mum) column. The elution was performed in 12 min for the organic acids and in 60 min for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target compounds were detected at 210 nm (organic acids, flavan-3-ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans-resveratrol) and 360 nm (flavonoids). The RSD for the repeatability test (n=5) of peak area and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the recovery results, with averaged values between 80 and 104% for polyphenols and 97-105% for organic acids. The calibration curves, obtained by triplicate injection of standard solutions, showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 0.9997 for organic acids. The LOD was in the range of 0.07-0.49 mg/L for polyphenols (cinnamic and gallic acids, respectively) and 0.001-0.046 g/L for organic acids (oxalic and lactic acids, respectively). The method was successfully used to measure and assess the polyphenolic fingerprint and organic acids profile of red, white, rosé and fortified wines.


Analytica Chimica Acta | 2010

Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine

Alisa Rudnitskaya; Sílvia M. Rocha; Andrey Legin; Vanda Pereira; José Carlos Marques

A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA-Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.


Journal of Separation Science | 2008

Quantification of polyphenols with potential antioxidant properties in wines using reverse phase HPLC

Neuza Paixão; Vanda Pereira; José Carlos Marques; José S. Câmara

A RP-HPLC method with photodiode array detection (DAD) was developed to separate, identify and quantify simultaneously the most representative phenolic compounds present in Madeira and Canary Islands wines. The optimized chromatographic method was carefully validated in terms of linearity, precision, accuracy and sensitivity. A high repeatability and a good stability of phenolics retention times (< 3%) were obtained, as well as relative peak area. Also high recoveries were achieved, over 80.3%. Polyphenols calibration curves showed a good linearity (r(2) >0.994) within test ranges. Detection limits ranged between 0.03 and 11.5 microg/mL for the different polyphenols. A good repeatability was obtained, with intra-day variations less than 7.9%. The described method was successfully applied to quantify several polyphenols in 26 samples of different kinds of wine (red, rosé and white wines) from Madeira and Canary Islands. Gallic acid was by far the most predominant acid. It represents more than 65% of all phenolics, followed by p-coumaric and caffeic acids. The major flavonoid found in Madeira wines was trans-resveratrol. In some wines, (-)-epicatechin was also found in highest amount. Canary wines were shown to be rich in gallic, caffeic and p-coumaric acids and quercetin.


Food Chemistry | 2014

Volatile profile of Madeira wines submitted to traditional accelerated ageing

Vanda Pereira; Juan Cacho; José Carlos Marques

The evolution of monovarietal fortified Madeira wines forced-aged by traditional thermal processing (estufagem) were studied in terms of volatiles. SPE extracts were analysed by GC-MS before and after heating at 45 °C for 3 months (standard) and at 70 °C for 1 month (overheating). One hundred and ninety volatile compounds were identified, 53 of which were only encountered in baked wines. Most chemical families increased after standard heating, especially furans and esters, up to 61 and 3-fold, respectively. On the contrary, alcohols, acetates and fatty acids decreased after heating. Varietal aromas, such as Malvasias monoterpenic alcohols were not detected after baking. The accelerated ageing favoured the development of some volatiles previously reported as typical aromas of finest Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-methylbutyrate, ethyl caproate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-decalactone were also found as potential contributors to the global aroma of baked wines.


Analytica Chimica Acta | 2014

Rapid and sensitive methodology for determination of ethyl carbamate in fortified wines using microextraction by packed sorbent and gas chromatography with mass spectrometric detection

João M. Leça; Vanda Pereira; Ana C. Pereira; José Carlos Marques

This work presents a new methodology to quantify ethyl carbamate (EC) in fortified wines. The presented approach combines the microextraction by packed sorbent (MEPS), using a hand-held automated analytical syringe, with one-dimensional gas chromatography coupled with mass spectrometry detection (GC-MS). The performance of different MEPS sorbent materials was tested, namely SIL, C2, C8, C18, and M1. Also, several extraction solvents and the matrix effect were evaluated. Experimental data showed that C8 and dichloromethane were the best sorbent/solvent pair to extract EC. Concerning solvent and sample volumes optimization used in MEPS extraction an experimental design (DoE) was carried out. The best extraction yield was achieved passing 300 μL of sample and 100 μL of dichloromethane. The method validation was performed using a matrix-matched calibration using both sweet and dry fortified wines, to minimize the matrix effect. The proposed methodology presented good linearity (R(2)=0.9999) and high sensitivity, with quite low limits of detection (LOD) and quantification (LOQ), 1.5 μg L(-1) and 4.5 μg L(-1), respectively. The recoveries varied between 97% and 106%, while the method precision (repeatability and reproducibility) was lower than 7%. The applicability of the methodology was confirmed through the analysis of 16 fortified wines, with values ranging between 7.3 and 206 μg L(-1). All chromatograms showed good peak resolution, confirming its selectivity. The developed MEPS/GC-MS methodology arises as an important tool to quantify EC in fortified wines, combining efficiency and effectiveness, with simpler, faster and affordable analytical procedures that provide great sensitivity without using sophisticated and expensive equipment.


Molecules | 2013

Polyphenols, Antioxidant Potential and Color of Fortified Wines during Accelerated Ageing: The Madeira Wine Case Study

Vanda Pereira; Francisco Albuquerque; Juan Cacho; José Carlos Marques

Polyphenols, antioxidant potential and color of three types of fortified Madeira wines were evaluated during the accelerated ageing, named as estufagem. The traditional estufagem process was set to 45 °C for 3 months. Overheating conditions, 1 month at 70 °C, were also examined. Total polyphenols (TP), total monomeric anthocyanins (TMA) and total flavonoids (TF) were assessed by spectrophotometric methods, while individual polyphenols and furans were simultaneously determined by HPLC-DAD. Antioxidant potential (AP) was estimated by ABTS, DPPH and FRAP assays, while color was evaluated by Glories and CIELab. Traditional estufagem decreased the TP and AP up to 20% and 26%, respectively, with final values similar to other wines. TMA of the Madeira wines from red grapes decreased during estufagem. Six hydroxybenzoic acids, three hydroxycinnamic acids, one stilbene, three flavonols and three flavan-3-ols were found in these wines. The prominent phenolics were hydroxycinnamates and hydroxybenzoates, even after estufagem. Most polyphenols decreased, with the exception of caffeic, ferulic, p-coumaric, gallic and syringic acids. Finally, both chromatic systems revealed that all wines tended to similar chromatic characteristics after estufagem. The study suggests that estufagem can be applied without high impact on polyphenols and antioxidant potential of these fortified wines.


Journal of Chemistry | 2015

Amino Acids and Biogenic Amines Evolution during the Estufagem of Fortified Wines

Vanda Pereira; Ana C. Pereira; Juan Pedro Pérez Trujillo; Juan Cacho; José Carlos Marques

The current study was focused on the impact of accelerated ageing (heating step) on the amino acid and biogenic amine profiles of fortified wines. In this sense, three Madeira wines from two commonly used grape varieties (one red and the other white) were analysed during the heating, at standard (45°C, 3 months) and overheating (70°C, 1 month) conditions, following a precolumn derivatization procedure using iodoacetic acid, o-phthaldialdehyde, and 2-mercaptoethanol, carried out in the injection loop prior to RP-HPLC-FLD detection. Eighteen amino acids were identified, with arginine being the most abundant. An important decrease of the amino acid levels was detected during the standard heating (up to 30%), enhanced up to 61% by the temperature increase. Cysteine, histidine, and asparagine revealed the greatest decreases at 45°C. Conversely, some amino acids, such as asparagine, slightly increased. Four biogenic amines were identified but always in trace amounts. Finally, it was observed that the accelerated ageing did not favour the biogenic amine development. The results also indicate that the heating process promotes the amino acid transformation into new ageing products.


Journal of Analytical, Bioanalytical and Separation Techniques | 2017

Analytical methodologies for the determination of biogenic amines in wines: an overview of the recent trends

Pereira Vanda; Andreia Miranda; João M. Leça; Vanda Pereira; José Carlos Marques; Ommega Internationals

Biogenic amines are naturally present in grapes or can occur during the vinification and aging processes, essentially due to the microorganism’s activity. When present in wines in high amount, biogenic amines may cause not only organoleptic defects but also adverse effects in sensitive human individuals, namely due to the toxicity of histamine, tyramine and putrescine. Even though there are no legal limits for the concentration of biogenic amines in wines, some European countries only recommend maximum limits for histamine. In this sense, biogenic amines in wines have been widely studied. The determination of amines in wines is commonly achieved by liquid chromatography, using derivatization reagents in order to promote its separation and detection. In alternative, other promising methodologies have been developed using capillary electrophoresis or biosensors, revealing lower costs and faster results, without needing a derivatization step. Nowadays, it is still a challenge to develop faster and inexpensive techniques or methodologies to apply in the wine industry. Thus, this review will be focused on the studies published in the last decade that involves the determination of biogenic amines in wines, highlighting the novelty, improvement and optimization of the analytical methods. The sample preparation procedures (such as derivatization reagents), the analytical methodologies and the new trends being followed by the wine industry are also described and discussed.


Food Research International | 2011

Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions

Vanda Pereira; F.M. Albuquerque; António César Silva Ferreira; Juan Cacho; José Carlos Marques

Collaboration


Dive into the Vanda Pereira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Cacho

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge