Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanda S. Lopes is active.

Publication


Featured researches published by Vanda S. Lopes.


Nature Genetics | 2010

AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis.

Carrie M. Louie; Gianluca Caridi; Vanda S. Lopes; Francesco Brancati; Andreas Kispert; Madeline A. Lancaster; Andrew M. Schlossman; Edgar A. Otto; Michael Leitges; Hermann Josef Gröne; Irma Lopez; Harini V. Gudiseva; John F. O'Toole; Elena Vallespín; Radha Ayyagari; Carmen Ayuso; Frans P.M. Cremers; Anneke I. den Hollander; Robert K. Koenekoop; Bruno Dallapiccola; Gian Marco Ghiggeri; Friedhelm Hildebrandt; Enza Maria Valente; David S. Williams; Joseph G. Gleeson

Degeneration of photoreceptors is a common feature of ciliopathies, owing to the importance of the specialized ciliary structure of these cells. Mutations in AHI1, which encodes a cilium-localized protein, have been shown to cause a form of Joubert syndrome that is highly penetrant for retinal degeneration. We show that Ahi1-null mice fail to form retinal outer segments and have abnormal distribution of opsin throughout their photoreceptors. Apoptotic cell death of photoreceptors occurs rapidly between 2 and 4 weeks of age in these mice and is significantly (P = 0.00175 and 0.00613) delayed by a reduced dosage of opsin. This phenotype also shows dosage-sensitive genetic interactions with Nphp1, another ciliopathy-related gene. Although it is not a primary cause of retinal blindness in humans, we show that an allele of AHI1 is associated with a more than sevenfold increase in relative risk of retinal degeneration within a cohort of individuals with the hereditary kidney disease nephronophthisis. Our data support context-specific roles for AHI1 as a contributor to retinopathy and show that AHI1 may explain a proportion of the variability in retinal phenotypes observed in nephronophthisis.


Cell Metabolism | 2012

Elevated PGC-1α Activity Sustains Mitochondrial Biogenesis and Muscle Function without Extending Survival in a Mouse Model of Inherited ALS

Sandrine Da Cruz; Philippe A. Parone; Vanda S. Lopes; Concepción Lillo; Melissa McAlonis-Downes; Sandra K. Lee; Anne P. Vetto; Susanna Petrosyan; Martin Marsala; Anne N. Murphy; David S. Williams; Bruce M. Spiegelman; Don W. Cleveland

The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS.


Gene Therapy | 2013

Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus

Vanda S. Lopes; Shannon E. Boye; Carrie M. Louie; Sanford L. Boye; Frank M. Dyka; Vince A. Chiodo; Hugo Fôfo; William W. Hauswirth; David S. Williams

Usher 1 patients are born profoundly deaf and then develop retinal degeneration. Thus they are readily identified before the onset of retinal degeneration, making gene therapy a viable strategy to prevent their blindness. Here, we have investigated the use of adeno-associated viruses (AAVs) for the delivery of the Usher 1B gene, MYO7A, to retinal cells in cell culture and in Myo7a-null mice. MYO7A cDNA, under control of a smCBA promoter, was packaged in single AAV2 and AAV5 vectors and as two overlapping halves in dual AAV2 vectors. The 7.9-kb smCBA-MYO7A exceeds the capacity of an AAV vector; packaging of such oversized constructs into single AAV vectors may involve fragmentation of the gene. Nevertheless, the AAV2 and AAV5 single vector preparations successfully transduced photoreceptor and retinal pigment epithelium cells, resulting in functional, full-length MYO7A protein and correction of mutant phenotypes, suggesting successful homologous recombination of gene fragments. With discrete, conventional-sized dual AAV2 vectors, full-length MYO7A was detected, but the level of protein expression was variable, and only a minority of cells showed phenotype correction. Our results show that MYO7A therapy with AAV2 or AAV5 single vectors is efficacious; however, the dual AAV2 approach proved to be less effective.


Journal of Biological Chemistry | 2012

Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function.

Richard Harkewicz; Hongjun Du; Zongzhong Tong; Hisham Alkuraya; Matthew Bedell; Woong Sun; Xiaolei Wang; Yuan Hao Hsu; Julian Esteve-Rudd; Guy Hughes; Zhiguang Su; Ming Zhang; Vanda S. Lopes; Robert S. Molday; David S. Williams; Edward A. Dennis; Kang Zhang

Background: Phospholipids containing very long chain polyunsaturated fatty acids (VLC-PUFAs) are enriched in retina. Results: Specific ELOVL4 rod or cone photoreceptor conditional knock-outs cause decreases in retinal VLC-PUFAs. Conclusion: ELOVL4 is critical for the synthesis of phosphatidylcholine-containing sn-1 VLC-PUFAs and vision. Significance: ELOVL4 mutations are implicated in Stargardt disease, a type of juvenile macular degeneration. Very long chain polyunsaturated fatty acid (VLC-PUFA)-containing glycerophospholipids are highly enriched in the retina; however, details regarding the specific synthesis and function of these highly unusual retinal glycerophospholipids are lacking. Elongation of very long chain fatty acids-4 (ELOVL4) has been identified as a fatty acid elongase protein involved in the synthesis of VLC-PUFAs. Mutations in ELOVL4 have also been implicated in an autosomal dominant form of Stargardt disease (STGD3), a type of juvenile macular degeneration. We have generated photoreceptor-specific conditional knock-out mice and used high performance liquid chromatography-mass spectrometry (HPLC-MS) to examine and analyze the fatty acid composition of retinal membrane glycerophosphatidylcholine and glycerophosphatidylethanolamine species. We also used immunofluorescent staining and histology coupled with electrophysiological data to assess retinal morphology and visual response. The conditional knock-out mice showed a significant decrease in retinal glycerophospholipids containing VLC-PUFAs, specifically contained in the sn-1 position of glycerophosphatidylcholine, implicating the role of Elovl4 in their synthesis. Conditional knock-out mice were also found to have abnormal accumulation of lipid droplets and lipofuscin-like granules while demonstrating photoreceptor-specific abnormalities in visual response, indicating the critical role of Elovl4 for proper rod or cone photoreceptor function. Altogether, this study demonstrates the essential role of ELOVL4 in VLC-PUFA synthesis and retinal function.


Molecular Biology of the Cell | 2010

Dysfunction of Heterotrimeric Kinesin-2 in Rod Photoreceptor Cells and the Role of Opsin Mislocalization in Rapid Cell Death

Vanda S. Lopes; David Jimeno; Kornnika Khanobdee; Xiaodan Song; Bryan Chen; Steven Nusinowitz; David S. Williams

Loss of kinesin-2 function causes rapid death of rod photoreceptors. The cell death is dependent on the expression of opsin, which first accumulates along the route to the outer segment, but not on signaling by opsin-arrestin complexes or by light activation; the key element appears to be the accumulation of excessive protein in the wrong place.


Human Molecular Genetics | 2011

The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65

Vanda S. Lopes; Daniel Gibbs; Richard T. Libby; Tomas S. Aleman; Darcy L. Welch; Concepción Lillo; Samuel G. Jacobson; Roxana A. Radu; Karen P. Steel; David S. Williams

Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B. In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place. We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle. We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells. This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light. RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels. Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity. Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction. Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.


Investigative Ophthalmology & Visual Science | 2009

Harmonin in the Murine Retina and the Retinal Phenotypes of Ush1c-Mutant Mice and Human USH1C

David S. Williams; Tomas S. Aleman; Concepcio´n Lillo; Vanda S. Lopes; Louise Hughes; Edwin M. Stone; Samuel G. Jacobson

PURPOSE To investigate the expression of harmonin in the mouse retina, test for ultrastructural and physiological mutant phenotypes in the retina of an Ush1c mutant mouse, and define in detail the retinal phenotype in human USH1C. METHODS Antibodies were generated against harmonin. Harmonin isoform distribution was examined by Western blot analysis and immunocytochemistry. Retinas of deaf circler (dfcr) mice, which possess mutant Ush1c, were analyzed by microscopy and electroretinography (ERG). Two siblings with homozygous 238_239insC (R80fs) USH1C mutations were studied with ERG, perimetry, and optical coherence tomography (OCT). RESULTS Harmonin isoforms a and c, but not b are expressed in the retina. Harmonin is concentrated in the photoreceptor synapse where the majority is postsynaptic. Dfcr mice do not undergo retinal degeneration and have normal synaptic ultrastructure and ERGs. USH1C patients had abnormal rod and cone ERGs. Rod- and cone-mediated sensitivities and retinal laminar architecture were normal across 50 degrees -60 degrees of visual field. A transition zone to severely abnormal function and structure was present at greater eccentricities. CONCLUSIONS The largest harmonin isoforms are not expressed in the retina. A major retinal concentration of harmonin is in the photoreceptor synapses, both pre- and post-synaptically. The dfcr mouse retina is unaffected by its mutant Ush1c. Patients with USH1C retained regions of normal central retina surrounded by degeneration. Perhaps the human disease is simply more aggressive than that in the mouse. Alternatively, the dfcr mouse may be a model for nonsyndromic deafness, due to the nonpathologic effect of its mutation on the retinal isoforms.


Journal of Biological Chemistry | 2009

Melanoregulin (MREG) modulates lysosome function in pigment epithelial cells.

Monika Damek-Poprawa; Tanja Diemer; Vanda S. Lopes; Concepción Lillo; Dawn C. Harper; Michael S. Marks; Yalin Wu; Janet R. Sparrow; Rivka A. Rachel; David S. Williams; Kathleen Boesze-Battaglia

Melanoregulin (MREG), the product of the Mregdsu gene, is a small highly charged protein, hypothesized to play a role in organelle biogenesis due to its effect on pigmentation in dilute, ashen, and leaden mutant mice. Here we provide evidence that MREG is required in lysosome-dependent phagosome degradation. In the Mreg-/- mouse, we show that loss of MREG function results in phagosome accumulation due to delayed degradation of engulfed material. Over time, the Mreg-/- mouse retinal pigment epithelial cells accumulate the lipofuscin component, A2E. MREG-deficient human and mouse retinal pigment epithelial cells exhibit diminished activity of the lysosomal hydrolase, cathepsin D, due to defective processing. Moreover, MREG localizes to small intracellular vesicles and associates with the endosomal phosphoinositide, phosphatidylinositol 3,5-biphosphate. Collectively, these studies suggest that MREG is required for lysosome maturation and support a role for MREG in intracellular trafficking.


Cytoskeleton | 2014

Distinct functions for IFT140 and IFT20 in opsin transport

Jacquelin A. Crouse; Vanda S. Lopes; Jovenal T. SanAgustin; Brian T. Keady; David S. Williams; Gregory J. Pazour

In the vertebrate retina, light is detected by the outer segments of photoreceptor rods and cones, which are highly modified cilia. Like other cilia, outer segments have no protein synthetic capacity and depend on proteins made in the cell body for their formation and maintenance. The mechanism of transport into the outer segment is not fully understood but intraflagellar transport (IFT) is thought to be a major mechanism for moving protein from the cell body into the cilium. In the case of photoreceptor cells, the high density of receptors and the disk turnover that occurs daily necessitates much higher rates of transport than would be required in other cilia. In this work, we show that the IFT complex A protein IFT140 is required for development and maintenance of outer segments. In earlier work we found that acute deletion of Ift20 caused opsin to accumulate at the Golgi complex. In this work, we find that acute deletion of Ift140 does not cause opsin to accumulate at the Golgi complex but rather it accumulates in the plasma membrane of the inner segments. This work is a strong support of a model of opsin transport where IFT20 is involved in the movement from the Golgi complex to the base of the cilium. Then, once at the base, the opsin is carried through the connecting cilium by an IFT complex that includes IFT140.


The Journal of Neuroscience | 2009

A Novel Allele of Myosin VIIa Reveals a Critical Function for the C-terminal FERM Domain for Melanosome Transport in Retinal Pigment Epithelial Cells

Martin Schwander; Vanda S. Lopes; Anna Sczaniecka; Daniel Gibbs; Concepción Lillo; David L. Delano; Lisa M. Tarantino; Tim Wiltshire; David S. Williams; Ulrich Müller

Mutations in the head and tail domains of the motor protein myosin VIIA (MYO7A) cause deaf-blindness (Usher syndrome type 1B, USH1B) and nonsyndromic deafness (DFNB2, DFNA11). The head domain binds to F-actin and serves as the MYO7A motor domain, but little is known about the function of the tail domain. In a genetic screen, we have identified polka mice, which carry a mutation (c.5742 + 5G > A) that affects splicing of the MYO7A transcript and truncates the MYO7A tail domain at the C-terminal FERM domain. In the inner ear, expression of the truncated MYO7A protein is severely reduced, leading to defects in hair cell development. In retinal pigment epithelial (RPE) cells, the truncated MYO7A protein is expressed at comparative levels to wild-type protein but fails to associate with and transport melanosomes. We conclude that the C-terminal FERM domain of MYO7A is critical for melanosome transport in RPE cells. Our findings also suggest that MYO7A mutations can lead to tissue-specific effects on protein levels, which may explain why some mutations in MYO7A lead to deafness without retinal impairment.

Collaboration


Dive into the Vanda S. Lopes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvina Bragin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mei Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Tanja Diemer

University of California

View shared research outputs
Top Co-Authors

Avatar

Laura S. Frost

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Bryan Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge