Vandanajay Bhatia
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vandanajay Bhatia.
Emerging Infectious Diseases | 2006
Jose G. Estrada-Franco; Vandanajay Bhatia; Héctor M. Díaz-Albiter; Laucel Ochoa-García; Alberto Barbabosa; Juan Carlos Vázquez-Chagoyán; Miguel A. Martinez-Perez; Carmen Guzmán-Bracho; Nisha Jain Garg
Seroanalysis of parasite circulation in dogs can help identify T. cruzi infection in humans.
Anais Da Academia Brasileira De Ciencias | 2005
Michele A. Zacks; Jian-Jun Wen; Galina Vyatkina; Vandanajay Bhatia; Nisha Jain Garg
There is growing evidence to suggest that chagasic myocardia are exposed to sustained oxidative stress-induced injuries that may contribute to disease progression. Pathogen invasion- and replication-mediated cellular injuries and immune-mediated cytotoxic reactions are the common source of reactive oxygen species (ROS) in infectious etiologies. However, our understanding of the source and role of oxidative stress in chagasic cardiomyopathy (CCM) remains incomplete. In this review, we discuss the evidence for increased oxidative stress in chagasic disease, with emphasis on mitochondrial abnormalities, electron transport chain dysfunction and its role in sustaining oxidative stress in myocardium. We discuss the literature reporting the consequences of sustained oxidative stress in CCM pathogenesis.
Free Radical Biology and Medicine | 2009
Shivali Gupta; Vandanajay Bhatia; Jian Jun Wen; Yewen Wu; Ming He Huang; Nisha Jain Garg
In this study, we investigated the role of Trypanosoma cruzi invasion and inflammatory processes in reactive oxygen species (ROS) production in a mouse atrial cardiomyocyte line (HL-1) and primary adult rat ventricular cardiomyocytes. Cardiomyocytes were incubated with T. cruzi (Tc) trypomastigotes, Tc lysate (TcTL), or Tc secreted proteins (TcSP) for 0-72 h, and ROS were measured by amplex red assay. Cardiomyocytes infected by T. cruzi (but not those incubated with TcTL or TcSP) exhibited a linear increase in ROS production for 2-48 h postinfection (max 18-fold increase), which was further enhanced by recombinant cytokines (IL-1beta, TNF-alpha, and IFN-gamma). We observed no increase in NADPH oxidase, xanthine oxidase, or myeloperoxidase activity, and specific inhibitors of these enzymes did not block the increased rate of ROS production in infected cardiomyocytes. Instead, the mitochondrial membrane potential was perturbed and resulted in inefficient electron transport chain (ETC) activity and enhanced electron leakage and ROS formation in infected cardiomyocytes. HL-1 rho (rho) cardiomyocytes lacked a functional ETC and exhibited no increase in ROS formation in response to T. cruzi. Together, these results demonstrate that invasion by T. cruzi and an inflammatory milieu affect mitochondrial integrity and contribute to electron transport chain inefficiency and ROS production in cardiomyocytes.
Infection and Immunity | 2004
Vandanajay Bhatia; Mala Sinha; Bruce A. Luxon; Nisha Jain Garg
ABSTRACT Glycosylphosphatidylinositol (GPI)-anchored proteins are abundantly expressed in the infective and intracellular stages of Trypanosoma cruzi and are recognized as antigenic targets by both the humoral and cellular arms of the immune system. Previously, we demonstrated the efficacy of genes encoding GPI-anchored proteins in eliciting partially protective immunity to T. cruzi infection and disease, suggesting their utility as vaccine candidates. For the identification of additional vaccine targets, in this study we screened the T. cruzi expressed sequence tag (EST) and genomic sequence survey (GSS) databases. By applying a variety of web-based genome-mining tools to the analysis of ∼2,500 sequences, we identified 348 (37.6%) EST and 260 (17.4%) GSS sequences encoding novel parasite-specific proteins. Of these, 19 sequences exhibited the characteristics of secreted and/or membrane-associated GPI proteins. Eight of the selected sequences were amplified to obtain genes TcG1, TcG2, TcG3, TcG4, TcG5, TcG6, TcG7, and TcG8 (TcG1-TcG8) which are expressed in different developmental stages of the parasite and conserved in the genome of a variety of T. cruzi strains. Flow cytometry confirmed the expression of the antigens encoded by the cloned genes as surface proteins in trypomastigote and/or amastigote stages of T. cruzi. When delivered as a DNA vaccine, genes TcG1-TcG6 elicited a parasite-specific antibody response in mice. Except for TcG5, antisera to genes TcG1-TcG6 exhibited trypanolytic activity against the trypomastigote forms of T. cruzi, a property known to correlate with the immune control of T. cruzi. Taken together, our results validate the applicability of bioinformatics in genome mining, resulting in the identification of T. cruzi membrane-associated proteins that are potential vaccine candidates.
Expert Review of Vaccines | 2005
Nisha Jain Garg; Vandanajay Bhatia
The clinically relevant pathognomonic consequences of human infection by Trypanosoma cruzi are dilation and hypertrophy of the left ventricle walls and thinning of the apex. The major complications and debilitating evolutionary outcomes of chronic infection include ventricular fibrillation, thromboembolism and congestive heart failure. American trypanosomiasis (Chagas disease) poses serious public healthcare and budgetary concerns. The currently available drugs, although effective against acute infection, are highly toxic and ineffective in arresting or attenuating clinical disease symptoms in chronic patients. The development of an efficacious prophylactic vaccine faces many challenges, and progress is slow, despite several years of effort. Studies in animal models and human patients have revealed the pathogenic mechanisms during disease progression, pathology of disease and features of protective immunity. Accordingly, several antigens, antigen-delivery vehicles and adjuvants have been tested in animal models, and some efforts have been successful in controlling infection and disease. This review will summarize the accumulated knowledge about the parasite and disease, as well as pathogenesis and protective immunity. The authors will discuss the efforts to date, and the challenges faced in achieving an efficient prophylactic vaccine against human American trypanosomiasis, and present the future perspectives.
Biochemical Journal | 2004
Nisha Jain Garg; Arpad Gerstner; Vandanajay Bhatia; James H. DeFord; John Papaconstantinou
Cardiac hypertrophy and remodelling in chagasic disease might be associated with mitochondrial dysfunction. In the present study, we characterized the cardiac metabolic responses to Trypanosoma cruzi infection and progressive disease severity using a custom-designed mitoarray (mitochondrial function-related gene array). Mitoarrays consisting of known, well-characterized mitochondrial function-related cDNAs were hybridized with 32P-labelled cDNA probes generated from the myocardium of mice during immediate early, acute and chronic phases of infection and disease development. The mitoarray successfully identified novel aspects of the T. cruzi-induced alterations in the expression of the genes related to mitochondrial function and biogenesis that were further confirmed by real-time reverse transcriptase-PCRs. Of note is the up-regulation of transcripts essential for fatty acid metabolism associated with repression of the mRNAs for pyruvate dehydrogenase complex in infected hearts. We observed no statistically significant changes in mRNAs for the enzymes of tricarboxylic acid cycle. These results suggest that fatty acid metabolism compensates the pyruvate dehydrogenase complex deficiencies for the supply of acetyl-CoA for a tricarboxylic acid cycle, and chagasic hearts may not be limited in reduced energy (NADH and FADH2). The observation of a decrease in mRNA level for several subunits of the respiratory chain complexes by mitoarray as well as global genome analysis suggests a limitation in mitochondrial oxidative phosphorylation-mediated ATP-generation capacity as the probable basis for cardiac homoeostasis in chagasic disease.
Molecular Cancer Therapeutics | 2009
Vandanajay Bhatia; Manjit K. Saini; Xiaoli Shen; Lian X. Bi; Suimin Qiu; Nancy L. Weigel; Miriam Falzon
Parathyroid hormone–related protein (PTHrP) plays a major role in prostate carcinoma progression and bone metastasis. Once prostate cancers become androgen-independent, treatment options become limited. Vitamin D analogues represent a potentially valuable class of agents in this clinical context. Using the prostate cancer cell line C4-2 as a model, we studied the effects of PTHrP and the noncalcemic vitamin D analogue EB1089 on markers of prostate cancer cell progression in vitro and in vivo. C4-2 is a second-generation androgen-independent LNCaP subline that metastasizes to the lymph nodes and bone when injected into nude mice and produces mixed lytic/blastic lesions, mimicking the in vivo situation. We report that PTHrP increases cell migration and invasion, and that a pathway via which EB1089 inhibits these processes is through down-regulation of PTHrP expression. PTHrP also increases anchorage-independent cell growth in vitro and xenograft growth in vivo; EB1089 reverses these effects. The in vivo PTHrP effects are accompanied by increased tumor cell proliferation and survival. Treatment with EB1089 reverses the proliferative but not the antiapoptotic effects of PTHrP. PTHrP also increases intratumor vessel density and vascular endothelial growth factor expression; EB1089 reverses these effects. Intracardially injected C4-2 cells produce predominantly osteoblastic lesions; PTHrP overexpression decreases the latency, increases the severity and alters the bone lesion profile to predominantly osteolytic. EB1089 largely reverses these PTHrP effects. A direct correlation between PTHrP immunoreactivity and increasing tumor grade is observed in human prostate cancer specimens. Thus, decreasing PTHrP production by treatment with vitamin D analogues may prove therapeutically beneficial for prostate cancer. [Mol Cancer Ther 2009;8(7):1787–98]
Regulatory Peptides | 2009
Vandanajay Bhatia; Manjit K. Saini; Miriam Falzon
Parathyroid hormone-related protein (PTHrP) is expressed by human colon cancer tissue and cell lines; expression correlates with colon carcinoma severity. PTHrP is synthesized as a prepro isoform and contains two targeting sequences - a signal sequence and a nuclear localization signal (NLS). The signal peptide (SP) directs PTHrP to the secretory pathway, where it exerts autocrine/paracrine effects. The NLS directs PTHrP to the nucleus/nucleolus, where it exerts intracrine effects. In this study, we used the human colon cancer cell line LoVo as a model system to study the effects of autocrine/paracrine and intracrine PTHrP action on cell growth and survival, hallmarks of malignant tumor cells. We report that PTHrP increases cell growth and survival, protects cells from serum-starvation-induced apoptosis, and promotes anchorage-independent cell growth via an intracrine pathway. Conversely, autocrine/paracrine PTHrP action decreases cell growth and survival. We also show an inverse relationship between secreted and nuclear PTHrP levels, in that cells overexpressing NLS-deleted PTHrP secrete higher PTHrP levels than those overexpressing the wild-type isoform. Conversely, SP deletion results in higher nuclear PTHrP levels. These observations provide evidence of a link between intracrine PTHrP action and cell growth and survival. Targeting PTHrP production in colon cancer may thus prove therapeutically beneficial.
Molecular Cancer Research | 2009
Vandanajay Bhatia; Ramanjaneya V. Mula; Nancy L. Weigel; Miriam Falzon
Parathyroid hormone-related protein (PTHrP) is expressed by human prostatic tissues and cancer cell lines. PTHrP enhances tumor cell growth and metastasis in vivo and up-regulates proinvasive integrin α6β4 expression in vitro. Hallmarks of malignant tumor cells include resistance to apoptosis and anchorage-independent cell growth. In this study, we used the human prostate cancer cell lines C4-2 and PC-3 as model systems to study the effects of PTHrP on these processes. We report that PTHrP protects these cells from doxorubicin-induced apoptosis and promotes anchorage-independent cell growth via an intracrine pathway. Conversely, autocrine/paracrine PTHrP action increases apoptosis in C4-2 cells and has no effect on apoptosis in PC-3 cells. The intracrine effects of PTHrP on apoptosis are mediated via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. PTHrP also affects the phosphorylation state of Akt substrates implicated in apoptosis suppression, including glycogen synthase kinase-3 and Bad. The prosurvival effects of PTHrP are accompanied by increases in the ratio of antiapoptotic to proapoptotic members of the Bcl-2 family and in levels of c-myc. PTHrP also increases nuclear factor-κB activity via a PI3K-dependent pathway. Integrin α6β4 is known to activate PI3K. Here, we also show that knockdown of integrin α6β4 negates the PTHrP-mediated activation of the PI3K/Akt pathway. Taken together, these observations provide evidence of a link between PTHrP and the PI3K/Akt signaling pathway through integrin α6β4, resulting in the activation of survival pathways. Targeting PTHrP production in prostate cancer may thus prove therapeutically beneficial. (Mol Cancer Res 2009;7(7):1119–31)
Cancer Letters | 2010
Ramanjaneya V. Mula; Vandanajay Bhatia; Miriam Falzon
Parathyroid hormone-related protein (PTHrP) is expressed by human colon cancer tissue and cell lines. Rac1 GTPase enhances colon cancer cell migration and invasion. Here we report a positive correlation between PTHrP expression and Rac1 activity in LoVo (human colon cancer) cells. The positive effects of PTHrP on Rac1 activity and on cell migration and invasion are mediated via the guanine nucleotide exchange factor Tiam1. Knockdown of integrin α6β4, which is upregulated by PTHrP, negates the PTHrP-mediated increase in Rac1 activation. Integrin α6β4 signals synergistically with growth factor receptors to activate the phosphatidylinositol 3-kinase (PI3-K) pathway. Chemical inhibition of PI3-K negates the PTHrP-mediated effects on Tiam1 and Rac1 activity. Tumors from PTHrP-overexpressing LoVo cells also show increased expression of Tiam1. Taken together, these observations provide evidence of a link between PTHrP and Rac1 activity through integrin α6β4, resulting in enhanced cell migration and invasion. Targeting PTHrP production in colon cancer may thus prove therapeutically beneficial.