Vanessa Aguiar-Pulido
Florida International University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanessa Aguiar-Pulido.
Evolutionary Bioinformatics | 2016
Vanessa Aguiar-Pulido; Wenrui Huang; Victoria Suarez-Ulloa; Trevor Cickovski; Kalai Mathee; Giri Narasimhan
Microbiomes are ubiquitous and are found in the ocean, the soil, and in/on other living organisms. Changes in the microbiome can impact the health of the environmental niche in which they reside. In order to learn more about these communities, different approaches based on data from multiple omics have been pursued. Metagenomics produces a taxonomical profile of the sample, metatranscriptomics helps us to obtain a functional profile, and metabolomics completes the picture by determining which byproducts are being released into the environment. Although each approach provides valuable information separately, we show that, when combined, they paint a more comprehensive picture. We conclude with a review of network-based approaches as applied to integrative studies, which we believe holds the key to in-depth understanding of microbiomes.
Journal of Theoretical Biology | 2013
Enrique Fernández-Blanco; Vanessa Aguiar-Pulido; Cristian R. Munteanu; Julian Dorado
Aging and life quality is an important research topic nowadays in areas such as life sciences, chemistry, pharmacology, etc. People live longer, and, thus, they want to spend that extra time with a better quality of life. At this regard, there exists a tiny subset of molecules in nature, named antioxidant proteins that may influence the aging process. However, testing every single protein in order to identify its properties is quite expensive and inefficient. For this reason, this work proposes a model, in which the primary structure of the protein is represented using complex network graphs that can be used to reduce the number of proteins to be tested for antioxidant biological activity. The graph obtained as a representation will help us describe the complex system by using topological indices. More specifically, in this work, Randićs Star Networks have been used as well as the associated indices, calculated with the S2SNet tool. In order to simulate the existing proportion of antioxidant proteins in nature, a dataset containing 1999 proteins, of which 324 are antioxidant proteins, was created. Using this data as input, Star Graph Topological Indices were calculated with the S2SNet tool. These indices were then used as input to several classification techniques. Among the techniques utilised, the Random Forest has shown the best performance, achieving a score of 94% correctly classified instances. Although the target class (antioxidant proteins) represents a tiny subset inside the dataset, the proposed model is able to achieve a percentage of 81.8% correctly classified instances for this class, with a precision of 81.3%.
Marine Drugs | 2013
Victoria Suarez-Ulloa; Juan Fernández-Tajes; Vanessa Aguiar-Pulido; Ciro Rivera-Casas; Rodrigo González-Romero; Juan Ausió; Josefina Méndez; Julian Dorado; José M. Eirín-López
Okadaic Acid (OA) constitutes the main active principle in Diarrhetic Shellfish Poisoning (DSP) toxins produced during Harmful Algal Blooms (HABs), representing a serious threat for human consumers of edible shellfish. Furthermore, OA conveys critical deleterious effects for marine organisms due to its genotoxic potential. Many efforts have been dedicated to OA biomonitoring during the last three decades. However, it is only now with the current availability of detailed molecular information on DNA organization and the mechanisms involved in the maintenance of genome integrity, that a new arena starts opening up for the study of OA contamination. In the present work we address the links between OA genotoxicity and chromatin by combining Next Generation Sequencing (NGS) technologies and bioinformatics. To this end, we introduce CHROMEVALOAdb, a public database containing the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis (a sentinel model organism) in response to OA exposure. This resource constitutes a leap forward for the development of chromatin-based biomarkers, paving the road towards the generation of powerful and sensitive tests for the detection and evaluation of the genotoxic effects of OA in coastal areas.
Molecular BioSystems | 2012
Vanessa Aguiar-Pulido; Cristian R. Munteanu; Jose A. Seoane; Enrique Fernández-Blanco; Lazaro G. Perez-Montoto; Humberto González-Díaz; Julian Dorado
Fast cancer diagnosis represents a real necessity in applied medicine due to the importance of this disease. Thus, theoretical models can help as prediction tools. Graph theory representation is one option because it permits us to numerically describe any real system such as the protein macromolecules by transforming real properties into molecular graph topological indices. This study proposes a new classification model for proteins linked with human colon cancer by using spiral graph topological indices of protein amino acid sequences. The best quantitative structure-disease relationship model is based on eleven Shannon entropy indices. It was obtained with the Naïve Bayes method and shows excellent predictive ability (90.92%) for new proteins linked with this type of cancer. The statistical analysis confirms that this model allows diagnosing the absence of human colon cancer obtaining an area under receiver operating characteristic of 0.91. The methodology presented can be used for any type of sequential information such as any protein and nucleic acid sequence.
Current Computer - Aided Drug Design | 2013
Vanessa Aguiar-Pulido; Marcos Gestal; Maykel Cruz-Monteagudo; Juan R. Rabuñal; Julian Dorado; Cristian-Robert Munteanu
The successful high throughput screening of molecule libraries for a specific biological property is one of the main improvements in drug discovery. The virtual molecular filtering and screening relies greatly on quantitative structure-activity relationship (QSAR) analysis, a mathematical model that correlates the activity of a molecule with molecular descriptors. QSAR models have the potential to reduce the costly failure of drug candidates in advanced (clinical) stages by filtering combinatorial libraries, eliminating candidates with a predicted toxic effect and poor pharmacokinetic profiles, and reducing the number of experiments. To obtain a predictive and reliable QSAR model, scientists use methods from various fields such as molecular modeling, pattern recognition, machine learning or artificial intelligence. QSAR modeling relies on three main steps: molecular structure codification into molecular descriptors, selection of relevant variables in the context of the analyzed activity, and search of the optimal mathematical model that correlates the molecular descriptors with a specific activity. Since a variety of techniques from statistics and artificial intelligence can aid variable selection and model building steps, this review focuses on the evolutionary computation methods supporting these tasks. Thus, this review explains the basic of the genetic algorithms and genetic programming as evolutionary computation approaches, the selection methods for high-dimensional data in QSAR, the methods to build QSAR models, the current evolutionary feature selection methods and applications in QSAR and the future trend on the joint or multi-task feature selection methods.
Molecules | 2010
Vanessa Aguiar-Pulido; Jose A. Seoane; Juan R. Rabuñal; Julian Dorado; Alejandro Pazos; Cristian R. Munteanu
Single nucleotide polymorphisms (SNPs) can be used as inputs in disease computational studies such as pattern searching and classification models. Schizophrenia is an example of a complex disease with an important social impact. The multiple causes of this disease create the need of new genetic or proteomic patterns that can diagnose patients using biological information. This work presents a computational study of disease machine learning classification models using only single nucleotide polymorphisms at the HTR2A and DRD3 genes from Galician (Northwest Spain) schizophrenic patients. These classification models establish for the first time, to the best knowledge of the authors, a relationship between the sequence of the nucleic acid molecule and schizophrenia (Quantitative Genotype – Disease Relationships) that can automatically recognize schizophrenia DNA sequences and correctly classify between 78.3–93.8% of schizophrenia subjects when using datasets which include simulated negative subjects and a linear artificial neural network.
PeerJ | 2015
Victoria Suarez-Ulloa; Juan Fernandez-Tajes; Vanessa Aguiar-Pulido; M. Veronica Prego-Faraldo; Fernanda Florez-Barros; Alexia Sexto-Iglesias; Josefina Méndez; José M. Eirín-López
Background. Harmful Algal Blooms (HABs) responsible for Diarrhetic Shellfish Poisoning (DSP) represent a major threat for human consumers of shellfish. The biotoxin Okadaic Acid (OA), a well-known phosphatase inhibitor and tumor promoter, is the primary cause of acute DSP intoxications. Although several studies have described the molecular effects of high OA concentrations on sentinel organisms (e.g., bivalve molluscs), the effect of prolonged exposures to low (sublethal) OA concentrations is still unknown. In order to fill this gap, this work combines Next-Generation sequencing and custom-made microarray technologies to develop an unbiased characterization of the transcriptomic response of mussels during early stages of a DSP bloom. Methods. Mussel specimens were exposed to a HAB episode simulating an early stage DSP bloom (200 cells/L of the dinoflagellate Prorocentrum lima for 24 h). The unbiased characterization of the transcriptomic responses triggered by OA was carried out using two complementary methods of cDNA library preparation: normalized and Suppression Subtractive Hybridization (SSH). Libraries were sequenced and read datasets were mapped to Gene Ontology and KEGG databases. A custom-made oligonucleotide microarray was developed based on these data, completing the expression analysis of digestive gland and gill tissues. Results. Our findings show that exposure to sublethal concentrations of OA is enough to induce gene expression modifications in the mussel Mytilus. Transcriptomic analyses revealed an increase in proteasomal activity, molecular transport, cell cycle regulation, energy production and immune activity in mussels. Oppositely, a number of transcripts hypothesized to be responsive to OA (notably the Serine/Threonine phosphatases PP1 and PP2A) failed to show substantial modifications. Both digestive gland and gill tissues responded similarly to OA, although expression modifications were more dramatic in the former, supporting the choice of this tissue for future biomonitoring studies. Discussion. Exposure to OA concentrations within legal limits for safe consumption of shellfish is enough to disrupt important cellular processes in mussels, eliciting sharp transcriptional changes as a result. By combining the study of cDNA libraries and a custom-made OA-specific microarray, our work provides a comprehensive characterization of the OA-specific transcriptome, improving the accuracy of the analysis of expresion profiles compared to single-replicated RNA-seq methods. The combination of our data with related studies helps understanding the molecular mechanisms underlying molecular responses to DSP episodes in marine organisms, providing useful information to develop a new generation of tools for the monitoring of OA pollution.
Current Computer - Aided Drug Design | 2013
Jose A. Seoane; Vanessa Aguiar-Pulido; Cristian R. Munteanu; Daniel Rivero; Juan R. Rabuñal; Julian Dorado; Alejandro Pazos
In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.
Current Pharmaceutical Design | 2012
Vanessa Aguiar-Pulido; Jose A. Seoane; Marcos Gestal; Julian Dorado
Data mining, a part of the Knowledge Discovery in Databases process (KDD), is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Analyses of epigenetic data have evolved towards genome-wide and high-throughput approaches, thus generating great amounts of data for which data mining is essential. Part of these data may contain patterns of epigenetic information which are mitotically and/or meiotically heritable determining gene expression and cellular differentiation, as well as cellular fate. Epigenetic lesions and genetic mutations are acquired by individuals during their life and accumulate with ageing. Both defects, either together or individually, can result in losing control over cell growth and, thus, causing cancer development. Data mining techniques could be then used to extract the previous patterns. This work reviews some of the most important applications of data mining to epigenetics.
International Journal of Data Mining, Modelling and Management | 2013
Daniel Rivero; Vanessa Aguiar-Pulido; Enrique Fernández-Blanco; Marcos Gestal
ANNs are one of the most successful learning systems. For this reason, many techniques have been published that allow the obtaining of feed-forward networks. However, few works describe techniques for developing recurrent networks. This work uses a genetic algorithm for automatic recurrent ANN development. This system has been applied to solve a well-known problem: classification of EEG signals from epileptic patients. Results show the high performance of this system, and its ability to develop simple networks, with a low number of neurons and connections.