Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa C. Wheeler is active.

Publication


Featured researches published by Vanessa C. Wheeler.


Cell Stem Cell | 2012

Induced Pluripotent Stem Cells from Patients with Huntington’s Disease : Show CAG Repeat-Expansion-Associated Phenotypes

Virginia B. Mattis; Soshana Svendsen; Allison D. Ebert; Clive N. Svendsen; Alvin R. King; Malcolm Casale; Sara T. Winokur; Gayani Batugedara; Marquis P. Vawter; Peter J. Donovan; Leslie F. Lock; Leslie M. Thompson; Yu Zhu; Elisa Fossale; Ranjit S. Atwal; Tammy Gillis; Jayalakshmi S. Mysore; Jian Hong Li; Ihn Sik Seong; Yiping Shen; Xiaoli Chen; Vanessa C. Wheeler; Marcy E. MacDonald; James F. Gusella; Sergey Akimov; Nicolas Arbez; Tarja Juopperi; Tamara Ratovitski; Jason H. Chiang; Woon Roung Kim

Huntingtons disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.


Neurobiology of Disease | 2009

Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models

Liliana Menalled; Bassem F. El-Khodor; Monica Patry; Mayte Suárez-Fariñas; Samantha J. Orenstein; Benjamin Zahasky; Christina Leahy; Vanessa C. Wheeler; X. William Yang; Marcy E. MacDonald; A. Jennifer Morton; Gill P. Bates; Janet M. Leeds; Larry Park; David Howland; Ethan Signer; Allan J. Tobin; Daniela Brunner

Huntingtons disease (HD) is one of the few neurodegenerative diseases with a known genetic cause, knowledge that has enabled the creation of animal models using genetic manipulations that aim to recapitulate HD pathology. The study of behavioral and neuropathological phenotypes of these HD models, however, has been plagued by inconsistent results across laboratories stemming from the lack of standardized husbandry and testing conditions, in addition to the intrinsic differences between the models. We have compared different HD models using standardized conditions to identify the most robust phenotypic differences, best suited for preclinical therapeutic efficacy studies. With a battery of tests of sensory-motor function, such as the open field and prepulse inhibition tests, we replicate previous results showing a strong and progressive behavioral deficit in the R6/2 line with an average of 129 CAG repeats in a mixed CBA/J and C57BL/6J background. We present the first behavioral characterization of a new model, an R6/2 line with an average of 248 CAG repeats in a pure C57BL/6J background, which also showed a progressive and robust phenotype. The BACHD in a FVB/N background showed robust and progressive behavioral phenotype, while the YAC128 full-length model on either an FVB/N or a C57BL/6J background generally showed milder deficits. Finally, the Hdh(Q111) knock-in mouse on a CD1 background showed very mild deficits. This first extensive standardized cross-characterization of several HD animal models under standardized conditions highlights several behavioral outcomes, such as hypoactivity, amenable to standardized preclinical therapeutic drug screening.


Cell | 2015

Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease

Jong-Min Lee; Vanessa C. Wheeler; Michael J. Chao; Jean Paul Vonsattel; Ricardo Mouro Pinto; Diane Lucente; Kawther Abu-Elneel; Eliana Marisa Ramos; Jayalakshmi S. Mysore; Tammy Gillis; Marcy E. MacDonald; James F. Gusella; Denise Harold; Timothy Stone; Valentina Escott-Price; Jun Han; Alexey Vedernikov; Peter Holmans; Lesley Jones; Seung Kwak; Mithra Mahmoudi; Michael Orth; G. Bernhard Landwehrmeyer; Jane S. Paulsen; E. Ray Dorsey; Ira Shoulson; Richard H. Myers

As a Mendelian neurodegenerative disorder, the genetic risk of Huntingtons disease (HD) is conferred entirely by an HTT CAG repeat expansion whose length is the primary determinant of the rate of pathogenesis leading to disease onset. To investigate the pathogenic process that precedes disease, we used genome-wide association (GWA) analysis to identify loci harboring genetic variations that alter the age at neurological onset of HD. A chromosome 15 locus displays two independent effects that accelerate or delay onset by 6.1 years and 1.4 years, respectively, whereas a chromosome 8 locus hastens onset by 1.6 years. Association at MLH1 and pathway analysis of the full GWA results support a role for DNA handling and repair mechanisms in altering the course of HD. Our findings demonstrate that HD disease modification in humans occurs in nature and offer a genetic route to identifying in-human validated therapeutic targets in this and other Mendelian disorders.


American Journal of Human Genetics | 2003

A Genome Scan for Modifiers of Age at Onset in Huntington Disease: The HD MAPS Study

Jian Liang Li; Michael R. Hayden; Elisabeth W. Almqvist; Ryan R. Brinkman; Alexandra Durr; Catherine Dodé; Patrick J. Morrison; Oksana Suchowersky; Christopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Estrella Gomez-Tortosa; David Mayo Cabrero; Andrea Novelletto; Marina Frontali; Martha Nance; Ronald J. Trent; Elizabeth McCusker; Randi Jones; Jane S. Paulsen; Madeline Harrison; Andrea Zanko; Ruth K. Abramson; Ana L. Russ; Beth Knowlton; Luc Djoussé; Jayalakshmi S. Mysore; Suzanne Tariot; Michael F. Gusella; Vanessa C. Wheeler

Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21-23 (LOD=2.29), and 6q24-26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.


Neurobiology of Disease | 2009

Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes

Ella Dragileva; Audrey E. Hendricks; Allison Teed; Tammy Gillis; Edith Lopez; Errol C. Friedberg; Raju Kucherlapati; Winfried Edelmann; Kathryn L. Lunetta; Marcy E. MacDonald; Vanessa C. Wheeler

Modifying the length of the Huntingtons disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knock-in mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.


Human Molecular Genetics | 2009

Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

Meera Swami; Audrey E. Hendricks; Tammy Gillis; Tiffany Massood; Jayalakshmi S. Mysore; Richard H. Myers; Vanessa C. Wheeler

The age of onset of Huntingtons disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.


PLOS Genetics | 2009

Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.

Agathi-Vassiliki Goula; Brian R. Berquist; David M. Wilson; Vanessa C. Wheeler; Yvon Trottier; Karine Merienne

Huntingtons disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion.


Human Molecular Genetics | 2010

Huntingtin facilitates polycomb repressive complex 2

Ihn Sik Seong; Juliana M. Woda; Ji Joon Song; Alejandro Lloret; Priyanka D. Abeyrathne; Caroline J. Woo; Gillian Gregory; Jong-Min Lee; Vanessa C. Wheeler; Thomas Walz; Robert E. Kingston; James F. Gusella; Ronald A. Conlon; Marcy E. MacDonald

Huntingtons disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat α-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtins domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large α-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure–function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in HdhQ111 EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtins α-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtins molecular function and the impact of its modulatory polyglutamine region.


BMC Medical Genetics | 2006

Genome-wide significance for a modifier of age at neurological onset in Huntington's Disease at 6q23-24: the HD MAPS study

Jian Liang Li; Michael R. Hayden; Simon C. Warby; Alexandra Durr; Patrick J. Morrison; Martha Nance; Chirstopher A. Ross; Russell L. Margolis; Adam Rosenblatt; Ferdinando Squitieri; Luigi Frati; Estrella Gomez-Tortosa; Carmen Ayuso García; Oksana Suchowersky; Mary Lou Klimek; Ronald J. Trent; Elizabeth McCusker; Andrea Novelletto; Marina Frontali; Jane S. Paulsen; Randi Jones; Tetsuo Ashizawa; Alice Lazzarini; Vanessa C. Wheeler; Ranjana Prakash; Gang Xu; Luc Djoussé; Jayalakshmi S. Mysore; Tammy Gillis; Michael Hakky

BackgroundAge at onset of Huntingtons disease (HD) is correlated with the size of the abnormal CAG repeat expansion in the HD gene; however, several studies have indicated that other genetic factors also contribute to the variability in HD age at onset. To identify modifier genes, we recently reported a whole-genome scan in a sample of 629 affected sibling pairs from 295 pedigrees, in which six genomic regions provided suggestive evidence for quantitative trait loci (QTL), modifying age at onset in HD.MethodsIn order to test the replication of this finding, eighteen microsatellite markers, three from each of the six genomic regions, were genotyped in 102 newly recruited sibling pairs from 69 pedigrees, and data were analyzed, using a multipoint linkage variance component method, in the follow-up sample and the combined sample of 352 pedigrees with 753 sibling pairs.ResultsSuggestive evidence for linkage at 6q23-24 in the follow-up sample (LOD = 1.87, p = 0.002) increased to genome-wide significance for linkage in the combined sample (LOD = 4.05, p = 0.00001), while suggestive evidence for linkage was observed at 18q22, in both the follow-up sample (LOD = 0.79, p = 0.03) and the combined sample (LOD = 1.78, p = 0.002). Epistatic analysis indicated that there is no interaction between 6q23-24 and other loci.ConclusionIn this replication study, linkage for modifier of age at onset in HD was confirmed at 6q23-24. Evidence for linkage was also found at 18q22. The demonstration of statistically significant linkage to a potential modifier locus opens the path to location cloning of a gene capable of altering HD pathogenesis, which could provide a validated target for therapeutic development in the human patient.


Journal of Biological Chemistry | 2012

Early Alterations of Brain Cellular Energy Homeostasis in Huntington Disease Models

Fanny Mochel; Brandon Durant; Xingli Meng; James P. O'Callaghan; Hua Yu; Emmanuel Brouillet; Vanessa C. Wheeler; Sandrine Humbert; Raphael Schiffmann; Alexandra Durr

Background: We hypothesized cerebral energy deficit in Huntington disease (HD). Results: We found increased brain phosphocreatine and creatine in two HD mouse models, preceding ATP decrease and motor symptoms. Conclusion: We demonstrated chronic and early alterations in energy homeostasis associated with reduced phosphocreatine utilization in HD. Significance: These findings suggest that energy deficit is a relevant therapeutic target in HD. Brain energy deficit has been a suggested cause of Huntington disease (HD), but ATP depletion has not reliably been shown in preclinical models, possibly because of the immediate post-mortem changes in cellular energy metabolism. To examine a potential role of a low energy state in HD, we measured, for the first time in a neurodegenerative model, brain levels of high energy phosphates using microwave fixation, which instantaneously inactivates brain enzymatic activities and preserves in vivo levels of analytes. We studied HD transgenic R6/2 mice at ages 4, 8, and 12 weeks. We found significantly increased creatine and phosphocreatine, present as early as 4 weeks for phosphocreatine, preceding motor system deficits and decreased ATP levels in striatum, hippocampus, and frontal cortex of R6/2 mice. ATP and phosphocreatine concentrations were inversely correlated with the number of CAG repeats. Conversely, in mice injected with 3-nitroproprionic acid, an acute model of brain energy deficit, both ATP and phosphocreatine were significantly reduced. Increased creatine and phosphocreatine in R6/2 mice was associated with decreased guanidinoacetate N-methyltransferase and creatine kinase, both at the protein and RNA levels, and increased phosphorylated AMP-dependent protein kinase (pAMPK) over AMPK ratio. In addition, in 4-month-old knock-in HdhQ111/+ mice, the earliest metabolic alterations consisted of increased phosphocreatine in the frontal cortex and increased the pAMPK/AMPK ratio. Altogether, this study provides the first direct evidence of chronic alteration in homeostasis of high energy phosphates in HD models in the earliest stages of the disease, indicating possible reduced utilization of the brain phosphocreatine pool.

Collaboration


Dive into the Vanessa C. Wheeler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge