Vanessa Campos
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanessa Campos.
Diabetes | 2013
Léonie Egli; Virgile Lecoultre; Fanny Theytaz; Vanessa Campos; Leanne Hodson; Philippe Schneiter; Bettina Mittendorfer; Bruce W. Patterson; Barbara A. Fielding; Philipp A. Gerber; Vittorio Giusti; Kaspar Berneis; Luc Tappy
Excess fructose intake causes hypertriglyceridemia and hepatic insulin resistance in sedentary humans. Since exercise improves insulin sensitivity in insulin-resistant patients, we hypothesized that it would also prevent fructose-induced hypertriglyceridemia. This study was therefore designed to evaluate the effects of exercise on circulating lipids in healthy subjects fed a weight-maintenance, high-fructose diet. Eight healthy males were studied on three occasions after 4 days of 1) a diet low in fructose and no exercise (C), 2) a diet with 30% fructose and no exercise (HFr), or 3) a diet with 30% fructose and moderate aerobic exercise (HFrEx). On all three occasions, a 9-h oral [13C]-labeled fructose loading test was performed on the fifth day to measure [13C]palmitate in triglyceride-rich lipoprotein (TRL)-triglycerides (TG). Compared with C, HFr significantly increased fasting glucose, total TG, TRL-TG concentrations, and apolipoprotein (apo)B48 concentrations as well as postfructose glucose, total TG, TRL-TG, and [13C]palmitate in TRL-TG. HFrEx completely normalized fasting and postfructose TG, TRL-TG, and [13C]palmitate concentration in TRL-TG and apoB48 concentrations. In addition, it increased lipid oxidation and plasma nonesterified fatty acid concentrations compared with HFr. These data indicate that exercise prevents the dyslipidemia induced by high fructose intake independently of energy balance.
The American Journal of Clinical Nutrition | 2012
Fanny Theytaz; Yasushi Noguchi; Léonie Egli; Vanessa Campos; Tania Buehler; Leanne Hodson; Bruce W. Patterson; Natsumi Nishikata; Roland Kreis; Bettina Mittendorfer; Barbara A. Fielding; Chris Boesch; Luc Tappy
BACKGROUND A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.
Clinical Nutrition | 2015
Sara De Giorgi; Vanessa Campos; Léonie Egli; Ulrike Toepel; Guillaume Carrel; Bertrand Cariou; Dominique Rainteau; Philippe Schneiter; Luc Tappy; Vittorio Giusti
BACKGROUND AND AIMS Formerly obese patients having undergone Roux-en-Y gastric bypass (RYGB) display both an accelerated digestion and absorption of carbohydrate and an increased plasma glucose clearance rate after meal ingestion. How RYGB effects postprandial kinetics of dietary lipids has yet not been investigated. METHODS Plasma triglyceride (TG), apoB48, total apoB, bile acids (BA), fibroblast growth factor 19 (FGF19), and cholecystokinin (CCK) were measured in post-absorptive conditions and over 4-h following the ingestion of a mixed test meal in a cross-sectional, pilot study involving 11 formerly obese female patients 33.8 ± 16.4 months after RYGB surgery and in 11 weight- and age-matched female control participants. RESULTS Compared to controls, RYGB patients had faster (254 ± 14 vs. 327 ± 7 min, p < 0.05) and lower (0.14 ± 0.04 vs. 0.35 ± 0.07 mM, p < 0.05) peak TG responses, but their peak apoB48 responses tended to be higher (2692 ± 336 vs. 1841 ± 228 ng/ml, p = 0.09). Their postprandial total BA concentrations were significantly increased and peaked earlier after meal ingestion than in controls. Their FGF19 and CCK concentrations also peaked earlier and to a higher value. CONCLUSIONS The early postprandial apoB48 and BA responses indicate that RYGB accelerated the rate of dietary lipid absorption. The lower postprandial peak TG strongly suggests that the RYGB simultaneously increased the clearance of TG-rich lipoproteins. CLINICAL TRIAL REGISTRATION NCT01891591.
International Journal of Obesity | 2016
Vanessa Campos; Luc Tappy
Fructose has always been present in our diet, but its consumption has increased markedly over the past 200 years. This is mainly due to consumption of sucrose or high-fructose corn syrup in industrial foods and beverages. Unlike glucose, fructose cannot be directly used as an energy source by all cells of the human body and needs first to be converted into glucose, lactate or fatty acids in the liver, intestine and kidney. Because of this specific two-step metabolism, some energy is consumed in splanchnic organs to convert fructose into other substrates, resulting in a lower net energy efficiency of fructose compared with glucose. A high intake of fructose-containing sugars is associated with body weight gain in large cohort studies, and fructose can certainly contribute to energy imbalance leading to obesity. Whether fructose-containing foods promote obesity more than other energy-dense foods remains controversial, however. A short-term (days–weeks) high-fructose intake is not associated with an increased fasting glycemia nor to an impaired insulin-mediated glucose transport in healthy subjects. It, however, increases hepatic glucose production, basal and postprandial blood triglyceride concentrations and intrahepatic fat content. Whether these metabolic alterations are early markers of metabolic dysfunction or merely adaptations to the specific two-step fructose metabolism remain unknown.
Obesity | 2015
Vanessa Campos; Camille Despland; Vaclav Brandejsky; Roland Kreis; Philippe Schneiter; Arnaud Chiolero; Christoph Hans Boesch; Luc Tappy
To test the hypothesis that substituting artificially sweetened beverages (ASB) for sugar‐sweetened beverages (SSB) decreases intrahepatocellular lipid concentrations (IHCL) in overweight subjects with high SSB consumption.
Preventive Medicine | 2012
Filipe Ferreira da Costa; Kelly Samara da Silva; Camilie Pacheco Schmoelz; Vanessa Campos; Maria Alice Altenburg de Assis
OBJECTIVE The objective of the study is to evaluate cross-sectional and longitudinal changes in childrens commuting to school in a representative sample of a Brazilian city. METHODS Two school-based studies were carried out in 2002 (n=2936; 7-10 years old) and 2007 (n=1232; 7-15 years old) in Florianopolis, Brazil. Cross-sectional data were collected from children aged 7 to 10 years in 2002 and 2007. Longitudinal analyses were performed with data from 733 children participating in both surveys. Children self-reported their mode of transportation to school using a validated illustrated questionnaire. Changes were tested with chi square statistics and McNemars test. RESULTS Cross-sectional data showed a 17% decline in active commuting; a decrease from 49% in 2002 to 41% in 2007. On the other hand, active commuting among the 733 children increased as they entered adolescence 5 years later, rising from 40% to 49%. CONCLUSION Active commuting to school decreased in Brazilian children aged 7-10 years over a five year period; whereas, it increased among children entering adolescence. Policies should focus on safety and environmental determinants to increase active commuting.
Obesity | 2016
Anna Surowska; Sara De Giorgi; Fanny Theytaz; Vanessa Campos; Leanne Hodson; Nathalie Stefanoni; Valentine Rey; Philippe Schneiter; M. Laville; Vittorio Giusti; Laure Gabert; Luc Tappy
Fructose is partly metabolized in small bowel enterocytes, where it can be converted into glucose or fatty acids. It was therefore hypothesized that Roux‐en‐Y gastric bypass (RYGB) may significantly alter fructose metabolism.
Nutrients | 2017
Vanessa Campos; Camille Despland; Vaclav Brandejsky; Roland Kreis; Philippe Schneiter; Christoph Hans Boesch; Luc Tappy
Objective: Addition of fructose to the diet of normal weight and overweight subjects can increase postprandial plasma triglyceride and uric acid concentration. We, therefore, assessed whether replacing sugar-sweetened beverages (SSB) with artificially-sweetened beverages (ASB) in the diet of overweight and obese subjects would decrease these parameters. Methods: Twenty-six participants of the REDUCS study, which assessed the effects of replacing SSB by ASB over 12 weeks on intra-hepatocellular lipid concentration, were included in this sub-analysis. All were studied after a four-week run-in period during which they consumed their usual diet and SSBs, and after a 12-week intervention in which they were randomly assigned to replace their SSBs with ASBs (ASB arm) or to continue their usual diet and SSBs (control arm, CTRL). At the end of run-in (week 4) and again at the end of intervention (week 16), they took part in an 8.5 h metabolic investigation during which their plasma glucose, insulin, glucagon, lactate, triglyceride (TG), non-esterified fatty acids (NEFA), and uric acid concentrations were measured over a 30 min fasting period (−30–0 min), then every 2 h over 480 min. with ingestion of standard breakfast at time 0 min and a standard lunch at time 240 min. Breakfast and lunch were consumed together with a 3.3 dL SSB at week 4 and with either an ASB (ASB arm) or a SSB (CTRL arm) at week 16. After analyzing the whole group, a secondary analysis was performed on 14 subjects with hepatic steatosis (seven randomized to ASB, seven to CTRL) and 12 subjects without hepatic steatosis (six randomized to ASB and six to CTRL). Results: Ingestion of meals increased plasma glucose, insulin, glucagon, lactate, and TG concentrations and decreased NEFA concentrations, but with no significant difference of integrated postprandial responses between week 4 and week 16 in both ASB and CTRL, except for a slightly decreased glucagon response in ASB. There was, however, no significant postprandial increase in uric acid concentration in both arms. In the secondary analysis, replacing SSBs with ASBs did not significantly change postprandial TG and uric acid concentrations irrespective of the presence or not of hepatic steatosis, Conclusions: In overweight, high SSB consumers, replacing SSBs with ASBs during 12 weeks did not significantly alter post-prandial TG and uric acid concentration, in spite of the lower energy and fructose content of the meals. These effects were globally the same in subjects without and with hepatic steatosis.
Appetite | 2018
Camille Crézé; Marie-Laure Notter-Bielser; Jean-François Knebel; Vanessa Campos; Luc Tappy; Micah M. Murray; Ulrike Toepel
Clinical nutrition ESPEN | 2017
Camille Despland; Barbara Walther; Christina Kast; Vanessa Campos; Valentine Rey; Nathalie Stefanoni; Luc Tappy