Vanessa Desantis
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanessa Desantis.
Oncotarget | 2016
Lucia Di Marzo; Vanessa Desantis; Antonio Giovanni Solimando; Simona Ruggieri; Tiziana Annese; Beatrice Nico; Ruggiero Fumarulo; Angelo Vacca; Maria Antonia Frassanito
Multiple myeloma (MM) drug resistance (DR) is a multistep transformation process based on a powerful interplay between bone marrow stromal cells and MM cells that allows the latter to escape anti-myeloma therapies. Here we present an overview of the role of the bone marrow microenvironment in both soluble factors-mediated drug resistance (SFM-DR) and cell adhesion-mediated drug resistance (CAM-DR), focusing on the role of new players, namely miRNAs, exosomes and cancer-associated fibroblasts.
Leukemia | 2016
Maria Antonia Frassanito; K De Veirman; Vanessa Desantis; L. Di Marzo; D Vergara; Simona Ruggieri; Tiziana Annese; Beatrice Nico; Eline Menu; Ivana Catacchio; Roberto Ria; Vito Racanelli; Michele Maffia; Emanuele Angelucci; Daniele Derudas; Ruggiero Fumarulo; Franco Dammacco; Domenico Ribatti; Karin Vanderkerken; Angelo Vacca
Bortezomib (bort) has improved overall survival in patients with multiple myeloma (MM), but the majority of them develop drug resistance. In this study, we demonstrate that bone marrow (BM) fibroblasts (cancer-associated fibroblasts; CAFs) from bort-resistant patients are insensitive to bort and protect the RPMI8226 and patients’ plasma cells against bort-induced apoptosis. Bort triggers CAFs to produce high levels of interleukin (IL)-6, IL-8, insulin-like growth factor (IGF)-1 and transforming growth factor (TGF) β. Proteomic studies on CAFs demonstrate that bort resistance parallels activation of oxidative stress and pro-survival autophagy. Indeed, bort induces reactive oxygen species in bort-resistant CAFs and activates autophagy by increasing light chain 3 protein (LC3)-II and inhibiting p62 and phospho-mammalian target of rapamycin. The small-interfering RNA knockdown of Atg7, and treatment with 3-methyladenine, restores bort sensitivity in bort-resistant CAFs and produces cytotoxicity in plasma cells co-cultured with CAFs. In the syngeneic 5T33 MM model, bort-treatment induces the expansion of LC3-II+ CAFs. TGFβ mediates bort-induced autophagy, and its blockade by LY2109761, a selective TβRI/II inhibitor, reduces the expression of p-Smad2/3 and LC3-II and induces apoptosis in bort-resistant CAFs. A combination of bort and LY2109761 synergistically induces apoptosis of RPMI8226 co-cultured with bort-resistant CAFs. These data define a key role for CAFs in bort resistance of plasma cells and provide the basis for a novel targeted therapeutic approach.
European Journal of Haematology | 2015
Maria Antonia Frassanito; Simona Ruggieri; Vanessa Desantis; Lucia Di Marzo; Patrizia Leone; Vito Racanelli; Ruggiero Fumarulo; Franco Dammacco; Angelo Vacca
Regulatory T cells (Tregs) are essential for maintenance of self‐tolerance; however, tumor cells can exploit the tolerance to escape the immune system. We investigated the Tregs frequency in patients with multiple myeloma (MM) and in those with monoclonal gammopathy of undetermined significance (MGUS), and found that CD4+FoxP3+ and CD8+FoxP3+ Tregs were significantly increased in patients with MM and correlated with the active phase. Both Tregs subsets were expanded in cocultures of CD3+ lymphocytes and fresh CD138+ MM plasma cells or RPMI8226 and U266 cell lines and functioned as natural (n) and inducible (i) Tregs insofar as they inhibited the proliferation of stimulated CD3 lymphocytes via contact‐dependent and contact‐independent pathways. Induction of Tregs by MM plasma cells required a contact‐dependent pathway, implying antigen recognition by T cells. MM plasma cells acted as immature and tolerogenic antigen‐presenting cells (APCs), in that they displayed low CD80/CD86 expression associated with a phagocytic activity. By acting as immature APCs, MM plasma cells plausibly expand (n)Tregs and (i)Tregs both through conversion of CD3+FoxP3− into CD3+FoxP3+ T cells and proliferation of CD3+FoxP3+ T cells, which may suppress the anti‐MM immune response.
Experimental Cell Research | 2016
Tiziana Annese; Patrizia Corsi; Simona Ruggieri; Roberto Tamma; Christian Marinaccio; Sabrina Picocci; Mariella Errede; Giorgina Specchia; Annamaria De Luca; Maria Antonia Frassanito; Vanessa Desantis; Angelo Vacca; Domenico Ribatti; Beatrice Nico
The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and β-dystroglycan (αDG, βDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier control occurring in the adult dystrophic brain.
Oncotarget | 2018
Aurelia Lamanuzzi; Ilaria Saltarella; Vanessa Desantis; Maria Antonia Frassanito; Patrizia Leone; Vito Racanelli; Beatrice Nico; Domenico Ribatti; Paolo Ditonno; Marcella Prete; Antonio Giovanni Solimando; Francesco Dammacco; Angelo Vacca; Roberto Ria
The mammalian Target of Rapamycin (mTOR) is an intracellular serine/threonine kinase that mediates intracellular metabolism, cell survival and actin rearrangement. mTOR is made of two independent complexes, mTORC1 and mTORC2, activated by the scaffold proteins RAPTOR and RICTOR, respectively. The activation of mTORC1 triggers protein synthesis and autophagy inhibition, while mTORC2 activation promotes progression, survival, actin reorganization, and drug resistance through AKT hyper-phosphorylation on Ser473. Due to the mTOR pivotal role in the survival of tumor cells, we evaluated its activation in endothelial cells (ECs) from 20 patients with monoclonal gammopathy of undetermined significance (MGUS) and 47 patients with multiple myeloma (MM), and its involvement in angiogenesis. MM-ECs showed a significantly higher expression of mTOR and RICTOR than MGUS-ECs. These data were supported by the higher activation of mTORC2 downstream effectors, suggesting a major role of mTORC2 in the angiogenic switch to MM. Specific inhibition of mTOR activity through siRNA targeting RICTOR and dual mTOR inhibitor PP242 reduced the MM-ECs angiogenic functions, including cell migration, chemotaxis, adhesion, invasion, in vitro angiogenesis on Matrigel®, and cytoskeleton reorganization. In addition, PP242 treatment showed anti-angiogenic effects in vivo in the Chick Chorioallantoic Membrane (CAM) and Matrigel® plug assays. PP242 exhibited a synergistic effect with lenalidomide and bortezomib, suggesting that mTOR inhibition can enhance the anti-angiogenic effect of these drugs. Data to be shown indicate that mTORC2 is involved in MM angiogenesis, and suggest that the dual mTOR inhibitor PP242 may be useful for the anti-angiogenic management of MM patients.
Oncotarget | 2018
Luigia Rao; Kim De Veirman; Donato Giannico; Ilaria Saltarella; Vanessa Desantis; Maria Antonia Frassanito; Antonio Giovanni Solimando; Domenico Ribatti; Marcella Prete; Andreas Harstrick; Ulrike Fiedler; Hendrik De Raeve; Vito Racanelli; Karin Vanderkerken; Angelo Vacca
The investigational drug MP0250 is a multi-specific DARPin® molecule that simultaneously binds and neutralizes VEGF and HGF with high specificity and affinity. Here we studied the antiangiogenic effects of the MP0250 in multiple myeloma (MM). In endothelial cells (EC) isolated from bone marrow (BM) of MM patients (MMEC) MP0250 reduces VEGFR2 and cMet phosphorylation and affects their downstream signaling cascades. MP0250 influences the secretory profile of MMEC and inhibits their in vitro angiogenic activities (spontaneous and chemotactic migration, adhesion, spreading and capillarogenesis). Compared to anti-VEGF or anti-HGF neutralizing mAbs, MP0250 strongly reduces capillary network formation and vessel-sprouting in a Matrigel angiogenesis assay. MP0250 potentiates the effect of bortezomib in the same in vitro setting. It significantly reduces the number of newly formed vessels in the choriollantoic membrane assay (CAM) and the Matrigel plug assay. In the syngeneic 5T33MM tumor model, MP0250 decreases the microvessel density (MVD) and the combination MP0250/bortezomib lowers the percentage of idiotype positive cells and the serum levels of M-protein. Overall results define MP0250 as a strong antiangiogenic agent with potential as a novel combination drug for treatment of MM patients.
Leukemia | 2018
Antonio Giovanni Solimando; Andreas Brandl; K Mattenheimer; Carolin Graf; M Ritz; Anna Ruckdeschel; Thorsten Stühmer; Z Mokhtari; Martina Rudelius; J Dotterweich; M Bittrich; Vanessa Desantis; R Ebert; Paolo Trerotoli; Ma Frassanito; Andreas Rosenwald; Angelo Vacca; Hermann Einsele; Franz Jakob; Andreas Beilhack
Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability. In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification.
Translational Oncology | 2018
Vanessa Desantis; Ilaria Saltarella; Aurelia Lamanuzzi; Maria Addolorata Mariggiò; Vito Racanelli; Angelo Vacca; Maria Antonia Frassanito
Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. In physiological condition, autophagy funnels cytoplasmic constituents to autophagolysosomes for degradation and is an alternative way for cell-death behavior. Here, we inspected autophagy as a prosurvival mechanism essential for drug resistance in multiple myeloma (MM). Accordingly, autophagy inhibitors used in association to conventional anti-MM drugs might enforce the effect against resistant MM plasma cells and render autophagy a new therapeutic target.
Lupus | 2018
Marcella Prete; Patrizia Leone; Maria Antonia Frassanito; Vanessa Desantis; C Marasco; Sebastiano Cicco; Franco Dammacco; Angelo Vacca; Vito Racanelli
Belimumab, a specific inhibitor of the soluble B lymphocyte stimulator (BlyS), is the first biological drug approved by the United States Food and Drug Administration for the treatment of patients with active systemic lupus erythematosus (SLE) refractory to standard therapy. Given that an imbalance between regulatory T cells (Treg) and interleukin (IL)-17A-secreting T cells (Th17) has been reported in various autoimmune disorders, we assessed the frequency of both Treg and Th17 peripheral blood populations before and after belimumab administration in 20 patients with active SLE refractory to standard therapy. After six months of treatment, the mean SELENA-SLEDAI score as well as the mean anti-double-stranded DNA antibody titers were significantly decreased. In addition, we observed a significant increase in Treg percentages and a parallel, significant decrease in Th17 percentages, accompanied by significantly reduced serum levels of IL-21. In vitro studies showed that Treg purified from belimumab-treated patients were fully functional and displayed a suppressor function similar to that of Treg purified from healthy donors. Belimumab can restore Treg/Th17 balance in SLE patients with uncontrolled disease activity, and this results in decreased flare rate and reduced glucocorticoid dosage.
Haematologica | 2018
Vanessa Desantis; Aurelia Lamanuzzi; Angelo Vacca
Dysfunctional DNA-damage response and consequent genomic instability play a pivotal role in the initiation and progression of both solid and hematologic tumors. Preservation of DNA integrity is, in fact, a key cellular function, hence several mechanisms that repair the damaged DNA need to be studied