Vanessa Herl
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanessa Herl.
Journal of Biological Chemistry | 2008
Andrea Thorn; Claudia Egerer-Sieber; Christof M. Jäger; Vanessa Herl; Frieder Müller-Uri; Wolfgang Kreis; Yves A. Muller
Progesterone 5β-reductase (5β-POR) catalyzes the stereospecific reduction of progesterone to 5β-pregnane-3,20-dione and is a key enzyme in the biosynthetic pathway of cardenolides in Digitalis (foxglove) plants. Sequence considerations suggested that 5β-POR is a member of the short chain dehydrogenase/reductase (SDR) family of proteins but at the same time revealed that the sequence motifs that in standard SDRs contain the catalytically important residues are missing. Here we present crystal structures of 5β-POR from Digitalis lanata in complex with NADP+ at 2.3Å and without cofactor bound at 2.4Å resolution together with a model of a ternary complex consisting of 5β-POR, NADP+, and progesterone. Indeed, 5β-POR displays the fold of an extended SDR. The architecture of the active site is, however, unprecedented because none of the standard catalytic residues are structurally conserved. A tyrosine (Tyr-179) and a lysine residue (Lys-147) are present in the active site, but they are displayed from novel positions and are part of novel sequence motifs. Mutating Tyr-179 to either alanine or phenylalanine completely abolishes the enzymatic activity. We propose that the distinct topology reflects the fact that 5β-POR reduces a conjugated double bond in a steroid substrate via a 1–4 addition mechanism and that this requires a repositioning of the catalytically important residues. Our observation that the sequence motifs that line the active site are conserved in a number of bacterial and plant enzymes of yet unknown function leads us to the proposition that 5β-POR defines a novel class of SDRs.
Biochimie | 2009
Vanessa Herl; Gabriele Fischer; V.A. Reva; M. Stiebritz; Yves A. Muller; Frieder Müller-Uri; Wolfgang Kreis
The Arabidopsis thaliana VEP1 gene product shows about 70% sequence identity to Digitalis lanata progesterone 5beta-reductase, an enzyme considered to catalyze a key step in the biosynthesis of cardiac glycosides. A. thaliana does not accumulate cardenolides but protein extracts prepared from its leaves were capable of reducing progesterone to 5beta-pregnane-3,20-dione. A full-length cDNA clone encoding a Delta(4,5)-steroid 5beta-reductase (At5beta-StR, EC 1.1.1.145/1.3.1.23), a member of the short-chain dehydrogenase/reductase (SDR) family, was isolated from A. thaliana leaves. A SphI/SalI At5beta-StR gene fragment was cloned into the pQE vector system and transformed into Escherichia coli. The gene was functionally expressed and the recombinant His-tagged fusion protein was characterized. K(m) values and specific activities for putative 3-oxo-Delta(4,5)-steroid substrates such as progesterone, cortisol, cortexone and 4-androstene-3,17-dione, and for the co-substrate NADPH were determined. Progesterone was stereo-specifically reduced to 5beta-pregnane-3,20-dione and none of the 3-oxo-Delta(5,6)-steroids tested were accepted as a substrate. The gene encoding At5beta-StR was strongly transcribed in stems and leaves. A three-dimensional model of At5beta-StR highlights a close structural similarity to the related, previously described D. lanata progesterone 5beta-reductase. This homology extends to the active site where single amino acid substitutions might be responsible for the increased catalytic efficiency of At5beta-StR when compared to the activity of the recombinant form of the D. lanata enzyme.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2006
Claudia Egerer-Sieber; Vanessa Herl; Frieder Müller-Uri; Wolfgang Kreis; Yves A. Muller
Progesterone 5beta-reductase (5beta-POR) catalyzes the reduction of progesterone to 5beta-pregnane-3,20-dione and is the first stereospecific enzyme in the putative biosynthetic pathway of Digitalis cardenolides. Selenomethionine-derivatized 5beta-POR from D. lanata was successfully overproduced and crystallized. The crystals belong to space group P4(3)2(1)2, with unit-cell parameters a = 71.73, c = 186.64 A. A MAD data set collected at 2.7 A resolution allowed the identification of six out of eight possible Se-atom positions. A first inspection of the MAD-phased electron-density map shows that 5beta-POR is a Rossmann-type reductase and the quality of the map is such that it is anticipated that a complete atomic model of 5beta-POR will readily be built.
Planta Medica | 2010
Mona Ernst; Rodrigo Maia de Pádua; Vanessa Herl; Frieder Müller-Uri; Wolfgang Kreis
Plants of the genus Digitalis produce 5 beta-cardenolides that are used in the therapy of cardiac insufficiency in humans. 3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD) and progesterone 5 beta-reductase (P5 betaR) are both supposed to be important enzymes in the biosynthesis of these natural products. Activity and gene expression were demonstrated for both enzymes in cardenolide-accumulating leaves of Digitalis lanata but also in cardenolide-free permanent cell suspension cultures initiated from D. lanata leaf tissue. Enzyme activities were determined and quantified by HPLC and GC-MS methods. Expression of the respective genes, namely AY585867.1 (P5betaR gene) and DQ466890.1 (3beta-HSD gene), was made evident by real-time polymerase chain reaction (qPCR) analysis. We demonstrate for the first time that the P5betaR gene, encoding an enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in cardenolide-free tissues of cardenolide-containing plants.
Planta Medica | 2010
Mona Ernst; Rodrigo de Padua; Vanessa Herl; Frieder Müller-Uri; Wolfgang Kreis
Plants of the genus Digitalis produce 5 beta-cardenolides that are used in the therapy of cardiac insufficiency in humans. 3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD) and progesterone 5 beta-reductase (P5 betaR) are both supposed to be important enzymes in the biosynthesis of these natural products. Activity and gene expression were demonstrated for both enzymes in cardenolide-accumulating leaves of Digitalis lanata but also in cardenolide-free permanent cell suspension cultures initiated from D. lanata leaf tissue. Enzyme activities were determined and quantified by HPLC and GC-MS methods. Expression of the respective genes, namely AY585867.1 (P5betaR gene) and DQ466890.1 (3beta-HSD gene), was made evident by real-time polymerase chain reaction (qPCR) analysis. We demonstrate for the first time that the P5betaR gene, encoding an enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in cardenolide-free tissues of cardenolide-containing plants.
Phytochemistry | 2006
Vanessa Herl; Gabriele Fischer; Frieder Müller-Uri; Wolfgang Kreis
Planta Medica | 2007
Vanessa Herl; Jördis Frankenstein; Nadine Meitinger; Frieder Müller-Uri; Wolfgang Kreis
Planta Medica | 2006
Vanessa Herl; Gabriele Fischer; Ralf Bötsch; Frieder Müller-Uri; Wolfgang Kreis
Phytochemistry | 2006
Vanessa Herl; Gabriele Fischer; Frieder Mueller-Uri; Wolfgang Kreis
Planta Medica | 2010
Mona Ernst; Vanessa Herl; S Schröder; Frieder Müller-Uri; Wolfgang Kreis