Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Leone is active.

Publication


Featured researches published by Vanessa Leone.


Nature | 2012

Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice

Suzanne Devkota; Yunwei Wang; Mark W. Musch; Vanessa Leone; Hannah Fehlner-Peach; Anuradha Nadimpalli; Dionysios A. Antonopoulos; Bana Jabri; Eugene B. Chang

The composite human microbiome of Western populations has probably changed over the past century, brought on by new environmental triggers that often have a negative impact on human health. Here we show that consumption of a diet high in saturated (milk-derived) fat, but not polyunsaturated (safflower oil) fat, changes the conditions for microbial assemblage and promotes the expansion of a low-abundance, sulphite-reducing pathobiont, Bilophila wadsworthia. This was associated with a pro-inflammatory T helper type 1 (TH1) immune response and increased incidence of colitis in genetically susceptible Il10−/−, but not wild-type mice. These effects are mediated by milk-derived-fat-promoted taurine conjugation of hepatic bile acids, which increases the availability of organic sulphur used by sulphite-reducing microorganisms like B. wadsworthia. When mice were fed a low-fat diet supplemented with taurocholic acid, but not with glycocholic acid, for example, a bloom of B. wadsworthia and development of colitis were observed in Il10−/− mice. Together these data show that dietary fats, by promoting changes in host bile acid composition, can markedly alter conditions for gut microbial assemblage, resulting in dysbiosis that can perturb immune homeostasis. The data provide a plausible mechanistic basis by which Western-type diets high in certain saturated fats might increase the prevalence of complex immune-mediated diseases like inflammatory bowel disease in genetically susceptible hosts.


PLOS ONE | 2014

Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity.

Christian C. Evans; Kathy J. LePard; Jeff W. Kwak; Mary C. Stancukas; Samantha Laskowski; Joseph Dougherty; Laura Moulton; Adam Glawe; Yunwei Wang; Vanessa Leone; Dionysios A. Antonopoulos; Daniel P. Smith; Eugene B. Chang; Mae J. Ciancio

Background Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Objective Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Methods Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. Results HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043). Conclusion Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO.


Cell Host & Microbe | 2015

Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

Vanessa Leone; Sean M. Gibbons; Kristina Martinez; Alan L. Hutchison; Edmond Y. Huang; Candace M. Cham; Joseph F. Pierre; Aaron F. Heneghan; Anuradha Nadimpalli; Nathaniel Hubert; Elizabeth Zale; Yunwei Wang; Yong Huang; Betty Theriault; Aaron R. Dinner; Mark W. Musch; Kenneth A. Kudsk; Brian J. Prendergast; Jack A. Gilbert; Eugene B. Chang

Circadian clocks and metabolism are inextricably intertwined, where central and hepatic circadian clocks coordinate metabolic events in response to light-dark and sleep-wake cycles. We reveal an additional key element involved in maintaining host circadian rhythms, the gut microbiome. Despite persistence of light-dark signals, germ-free mice fed low or high-fat diets exhibit markedly impaired central and hepatic circadian clock gene expression and do not gain weight compared to conventionally raised counterparts. Examination of gut microbiota in conventionally raised mice showed differential diurnal variation in microbial structure and function dependent upon dietary composition. Additionally, specific microbial metabolites induced under low- or high-fat feeding, particularly short-chain fatty acids, but not hydrogen sulfide, directly modulate circadian clock gene expression within hepatocytes. These results underscore the ability of microbially derived metabolites to regulate or modify central and hepatic circadian rhythm and host metabolic function, the latter following intake of a Westernized diet.


Journal of Gastroenterology | 2013

Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases

Vanessa Leone; Eugene B. Chang; Suzanne Devkota

The incidence of inflammatory bowel diseases (IBD), as well as other inflammatory conditions, has dramatically increased over the past half century. While many studies have shown that IBD exhibits a genetic component via genome-wide association studies, genetic drift alone cannot account for this increase, and other factors, such as those found in the environment must play a role, suggesting a “multiple hit” phenomenon that precipitates disease. One major environmental factor, dietary intake, has shifted to a high fat, high carbohydrate Western-type diet in developing nations, nearly in direct correlation with the increasing incidence of IBD. Recent evidence suggests that specific changes in dietary intake have led to a shift in the composite human gut microbiota, resulting in the emergence of pathobionts that can thrive under specific conditions. In the genetically susceptible host, the emerging pathobionts can lead to increasing incidence and severity of IBD and other inflammatory disorders. Since the gut microbiota is plastic and responds to dietary modulations, the use of probiotics, prebiotics, and/or dietary alterations are all intriguing complementary therapeutic approaches to alleviate IBD symptoms. However, the interactions are complex and it is unlikely that a one-size-fits all approach can be utilized across all populations affected by IBD. Exploration into and thoroughly understanding the interactions between host and microbes, primarily in the genetically susceptible host, will help define strategies that can be tailored to an individual as we move towards an era of personalized medicine to treat IBD.


Current Opinion in Structural Biology | 2010

Targeting biomolecular flexibility with metadynamics.

Vanessa Leone; Fabrizio Marinelli; Paolo Carloni; Michele Parrinello

Metadynamics calculations allow investigating structure, plasticity, and energetics in a variety of biological processes spanning from molecular docking to protein folding. Recent theoretical developments have led to applications to increasingly complex systems and processes stepping up the biological relevance of the problem solved. Here, after summarizing recent technical advances and applications, we give a perspective of the method as a tool for enzymology and for the prediction of NMR and other spectroscopic data.


Scientific Reports | 2016

Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease

Myles R. Minter; Can Zhang; Vanessa Leone; Daina L. Ringus; Xiaoqiong Zhang; Paul Oyler-Castrillo; Mark W. Musch; Fan Liao; Joseph Ward; David M. Holtzman; Eugene B. Chang; Rudolph E. Tanzi; Sangram S. Sisodia

Severe amyloidosis and plaque-localized neuro-inflammation are key pathological features of Alzheimer’s disease (AD). In addition to astrocyte and microglial reactivity, emerging evidence suggests a role of gut microbiota in regulating innate immunity and influencing brain function. Here, we examine the role of the host microbiome in regulating amyloidosis in the APPSWE/PS1ΔE9 mouse model of AD. We show that prolonged shifts in gut microbial composition and diversity induced by long-term broad-spectrum combinatorial antibiotic treatment regime decreases Aβ plaque deposition. We also show that levels of soluble Aβ are elevated and that levels of circulating cytokine and chemokine signatures are altered in this setting. Finally, we observe attenuated plaque-localised glial reactivity in these mice and significantly altered microglial morphology. These findings suggest the gut microbiota community diversity can regulate host innate immunity mechanisms that impact Aβ amyloidosis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation

Katharina Schlegel; Vanessa Leone; José D. Faraldo-Gómez; Volker Müller

ATP synthases are the primary source of ATP in all living cells. To catalyze ATP synthesis, these membrane-associated complexes use a rotary mechanism powered by the transmembrane diffusion of ions down a concentration gradient. ATP synthases are assumed to be driven either by H+ or Na+, reflecting distinct structural motifs in their membrane domains, and distinct metabolisms of the host organisms. Here, we study the methanogenic archaeon Methanosarcina acetivorans using assays of ATP hydrolysis and ion transport in inverted membrane vesicles, and experimentally demonstrate that the rotary mechanism of its ATP synthase is coupled to the concurrent translocation of both H+ and Na+ across the membrane under physiological conditions. Using free-energy molecular simulations, we explain this unprecedented observation in terms of the ion selectivity of the binding sites in the membrane rotor, which appears to have been tuned via amino acid substitutions so that ATP synthesis in M. acetivorans can be driven by the H+ and Na+ gradients resulting from methanogenesis. We propose that this promiscuity is a molecular mechanism of adaptation to life at the thermodynamic limit.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Engineering rotor ring stoichiometries in the ATP synthase

Denys Pogoryelov; Adriana L. Klyszejko; Ganna O. Krasnoselska; Eva-Maria Heller; Vanessa Leone; Julian D. Langer; Janet Vonck; Daniel J. Müller; José D. Faraldo-Gómez; Thomas Meier

ATP synthase membrane rotors consist of a ring of c-subunits whose stoichiometry is constant for a given species but variable across different ones. We investigated the importance of c/c-subunit contacts by site-directed mutagenesis of a conserved stretch of glycines (GxGxGxGxG) in a bacterial c11 ring. Structural and biochemical studies show a direct, specific influence on the c-subunit stoichiometry, revealing c<11, c12, c13, c14, and c>14 rings. Molecular dynamics simulations rationalize this effect in terms of the energetics and geometry of the c-subunit interfaces. Quantitative data from a spectroscopic interaction study demonstrate that the complex assembly is independent of the c-ring size. Real-time ATP synthesis experiments in proteoliposomes show the mutant enzyme, harboring the larger c12 instead of c11, is functional at lower ion motive force. The high degree of compliance in the architecture of the ATP synthase rotor offers a rationale for the natural diversity of c-ring stoichiometries, which likely reflect adaptations to specific bioenergetic demands. These results provide the basis for bioengineering ATP synthases with customized ion-to-ATP ratios, by sequence modifications.


Journal of Parenteral and Enteral Nutrition | 2013

Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue

Edmond Y. Huang; Vanessa Leone; Suzanne Devkota; Yunwei Wang; Matthew J. Brady; Eugene B. Chang

BACKGROUND Growing evidence shows that dietary factors can dramatically alter the gut microbiome in ways that contribute to metabolic disturbance and progression of obesity. In this regard, mesenteric adipose tissue has been implicated in mediating these processes through the elaboration of proinflammatory adipokines. In this study, we examined the relationship of these events by determining the effects of dietary fat content and source on gut microbiota, as well as the effects on adipokine profiles of mesenteric and peripheral adipocytes. METHODS Adult male C57Bl/6 mice were fed milk fat-based, lard-based (saturated fatty acid sources), or safflower oil (polyunsaturated fatty acid)-based high-fat diets for 4 weeks. Body mass and food consumption were measured. Stool 16S ribosomal RNA (rRNA) was isolated and analyzed via terminal restriction fragment length polymorphism as well as variable V3-4 sequence tags via next-generation sequencing. Mesenteric and gonadal adipose samples were analyzed for both lipogenic and inflammatory mediators via quantitative real-time polymerase chain reaction. RESULTS High-fat feedings caused more weight gain with concomitant increases in caloric consumption relative to low-fat diets. In addition, each of the high-fat diets induced dramatic and specific 16S rRNA phylogenic profiles that were associated with different inflammatory and lipogenic mediator profiles of mesenteric and gonadal fat depots. CONCLUSIONS Our findings support the notion that dietary fat composition can both reshape the gut microbiota and alter host adipose tissue inflammatory/lipogenic profiles. They also demonstrate the interdependency of dietary fat source, commensal gut microbiota, and inflammatory profile of mesenteric fat that can collectively affect the host metabolic state.


Cell Host & Microbe | 2016

Genetic and Metabolic Signals during Acute Enteric Bacterial Infection Alter the Microbiota and Drive Progression to Chronic Inflammatory Disease

Karishma Kamdar; Samira Khakpour; Jingyu Chen; Vanessa Leone; Thomas Mangatu; Dionysios A. Antonopoulos; Eugene B. Chang; Stacy A. Kahn; Barbara S. Kirschner; Glenn M. Young; R. William DePaolo

Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

Collaboration


Dive into the Vanessa Leone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge