Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Machault is active.

Publication


Featured researches published by Vanessa Machault.


Malaria Journal | 2009

Highly focused anopheline breeding sites and malaria transmission in Dakar

Vanessa Machault; Libasse Gadiaga; Cécile Vignolles; Fanny Jarjaval; Samia Bouzid; Cheikh Sokhna; Jean-Pierre Lacaux; Jean-François Trape; Christophe Rogier; Frédéric Pagès

BackgroundUrbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas.MethodsTen study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights). The Plasmodium falciparum circumsporozoite (CSP) index was measured by ELISA and the entomological inoculation rates (EIR) were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods.ResultsIn September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%). EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8%) and Anopheles melas (5.2%). None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1%) served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel between larval and adult densities was found in six of the ten study areas.ConclusionThe results provide evidence of malaria transmission in downtown Dakar and its surrounding suburbs. Spatial heterogeneity of human biting rates was very marked and malaria transmission was highly focal. In Dakar, mean figures for transmission would not provide a comprehensive picture of the entomological situation; risk evaluation should therefore be undertaken on a small scale.


International Journal of Health Geographics | 2012

Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

Peter Dambach; Vanessa Machault; Jean-Pierre Lacaux; Cécile Vignolles; Ali Sié; Rainer Sauerborn

IntroductionThe use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping.MethodsA SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the images spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST).ResultsThe DEM derived altitude as well as indices calculations combining the satellites spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points.ConclusionsRemotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling approach based on remotely sensed information is potentially useful for counter measures that are putting on at the environmental side, namely vector larvae control via larviciding and water body reforming.


Malaria Journal | 2008

Malaria transmission in Dakar: A two-year survey

Frédéric Pagès; Gaëtan Texier; Bruno Pradines; Libasse Gadiaga; Vanessa Machault; Fanny Jarjaval; Kristell Penhoat; Franck Berger; Jean-François Trape; Christophe Rogier; Cheikh Sokhna

BackgroundAccording to entomological studies conducted over the past 30 years, there was low malaria transmission in suburb of Dakar but little evidence of it in the downtown area. However; there was some evidence of local transmission based on reports of malaria among permanent residents. An entomological evaluation of malaria transmission was conducted from May 2005 to October 2006 in two areas of Dakar.MethodsMosquitoes were sampled by human landing collection during 34 nights in seven places in Bel-air area (238 person-nights) and during 24 nights in five places in Ouakam area (120 person-nights). Mosquitoes were identified morphologically and by molecular methods. The Plasmodium falciparum circumsporozoïte indexes were measured by ELISA, and the entomological inoculation rates (EIR) were calculated for both areas. Molecular assessments of pyrethroid knock down resistance (Kdr) and of insensitive acetylcholinesterase resistance were conducted.ResultsFrom May 2005 to October 2006, 4,117 and 797 Anopheles gambiae s.l. respectively were caught in Bel-air and Ouakam. Three members of the complex were present: Anopheles arabiensis (> 98%), Anopheles melas (< 1%) and An. gambiae s.s. molecular form M (< 1%). Infected mosquitoes were caught only during the wintering period between September and November in both places. In 2005 and 2006, annual EIRs were 9,5 and 4, respectively, in Bel-air and 3 and 3, respectively, in Ouakam. The proportion of host-seeking An. gambiae s.l. captured indoors were 17% and 51% in Bel air and Ouakam, respectively. Ace 1 mutations were not identified in both members of the An. gambiae complex. Kdr mutation frequency in An. arabiensis was 12% in Bel-air and 9% in Ouakam.ConclusionMalaria is transmitted in Dakar downtown area. Infected mosquitoes were caught in two subsequent years during the wintering period in two distant quarters of Dakar. These data agree with clinical data from a Senegalese military Hospital of Dakar (Hospital Principal) where most malaria cases occurred between October and December. It was the first detection of An. melas in Dakar.


Global Health Action | 2009

Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district Burkina Faso

Peter Dambach; Ali Sié; Jean-Pierre Lacaux; Cécile Vignolles; Vanessa Machault; Rainer Sauerborn

Introduction: Malaria control measures such as early diagnosis and treatment, intermittent treatment of pregnant women, impregnated bed nets, indoor spraying and larval control measures are difficult to target specifically because of imprecise estimates of risk at a small-scale level. Ways of estimating local risks for malaria are therefore important. Methods: A high-resolution satellite view from the SPOT 5 satellite during 2008 was used to generate a land cover classification in the malaria endemic lowland of North-Western Burkina Faso. For the area of a complete satellite view of 60×60 km, a supervised land cover classification was carried out. Ten classes were built and correlated to land cover types known for acting as Anopheles mosquito breeding sites. Results: According to known correlations of Anopheles larvae presence and surface water-related land cover, cultivated areas in the riverine vicinity of Kossi River were shown to be one of the most favourable sites for Anopheles production. Similar conditions prevail in the South of the study region, where clayey soils and higher precipitations benefit the occurrence of surface water. Besides pools, which are often directly detectable, rice fields and occasionally flooded crops represent most appropriate habitats. On the other hand, forests, elevated regions on porous soils, grasslands and the dryer, sandy soils in the north-western part turned out to deliver fewer mosquito breeding opportunities. Conclusions: Potential high and low risks for malaria at the village level can be differentiated from satellite data. While much remains to be done in terms of establishing correlations between remotely sensed risks and malaria disease patterns, this is a potentially useful approach which could lead to more focused disease control programmes.


PLOS ONE | 2012

Risk mapping of Anopheles gambiae s.l. densities using remotely-sensed environmental and meteorological data in an urban area: Dakar, Senegal.

Vanessa Machault; Cécile Vignolles; Frédéric Pagès; Libasse Gadiaga; Yves Tourre; Abdoulaye Gaye; Cheikh Sokhna; Jean-François Trape; Jean-Pierre Lacaux; Christophe Rogier

Introduction High malaria transmission heterogeneity in an urban environment is basically due to the complex distribution of Anopheles larval habitats, sources of vectors. Understanding 1) the meteorological and ecological factors associated with differential larvae spatio-temporal distribution and 2) the vectors dynamic, both may lead to improving malaria control measures with remote sensing and high resolution data as key components. In this study a robust operational methodology for entomological malaria predictive risk maps in urban settings is developed. Methods The Tele-epidemiology approach, i.e., 1) intensive ground measurements (Anopheles larval habitats and Human Biting Rate, or HBR), 2) selection of the most appropriate satellite data (for mapping and extracting environmental and meteorological information), and 3) use of statistical models taking into account the spatio-temporal data variability has been applied in Dakar, Senegal. Results First step was to detect all water bodies in Dakar. Secondly, environmental and meteorological conditions in the vicinity of water bodies favoring the presence of Anopheles gambiae s.l. larvae were added. Then relationship between the predicted larval production and the field measured HBR was identified, in order to generate An. gambiae s.l. HBR high resolution maps (daily, 10-m pixel in space). Discussion and Conclusion A robust operational methodology for dynamic entomological malaria predictive risk maps in an urban setting includes spatio-temporal variability of An. gambiae s.l. larval habitats and An. gambiae s.l. HBR. The resulting risk maps are first examples of high resolution products which can be included in an operational warning and targeting system for the implementation of vector control measures.


Malaria Journal | 2011

Conditions of malaria transmission in Dakar from 2007 to 2010

Libasse Gadiaga; Vanessa Machault; Frédéric Pagès; Abdoulaye Gaye; Fanny Jarjaval; Lydie Godefroy; Birane Cissé; Jean Pierre Lacaux; Cheikh Sokhna; Jean-François Trape; Christophe Rogier

BackgroundPrevious studies in Dakar have highlighted the spatial and temporal heterogeneity of Anopheles gambiae s.l. biting rates. In order to improve the knowledge of the determinants of malaria transmission in this city, the present study reports the results of an extensive entomological survey that was conducted in 45 areas in Dakar from 2007 to 2010.MethodsWater collections were monitored for the presence of anopheline larvae. Adult mosquitoes were sampled by human landing collection. Plasmodium falciparum circumsporozoïte (CSP) protein indexes were measured by ELISA (enzyme-linked immunosorbent assay), and the entomological inoculation rates were calculated.ResultsThe presence of anopheline larvae were recorded in 1,015 out of 2,683 observations made from 325 water collections. A water pH of equal to or above 8.0, a water temperature that was equal to or above 30°C, the absence of larvivorous fishes, the wet season, the presence of surface vegetation, the persistence of water and location in a slightly urbanised area were significantly associated with the presence of anopheline larvae and/or with a higher density of anopheline larvae. Most of the larval habitats were observed in public areas, i.e., freely accessible.A total of 496,310 adult mosquitoes were caught during 3096 person-nights, and 44967 of these specimens were identified as An.gambiae s.l. The mean An. gambiae s.l. human-biting rate ranged from 0.1 to 248.9 bites per person per night during the rainy season. Anopheles arabiensis (93.14%), Anopheles melas (6.83%) and An. gambiae s.s. M form (0.03%) were the three members of the An. gambiae complex. Fifty-two An. arabiensis and two An. melas specimens were CSP-positive, and the annual CSP index was 0.64% in 2007, 0.09% in 2008-2009 and 0.12% in 2009-2010. In the studied areas, the average EIR ranged from 0 to 17.6 infected bites per person during the entire transmission season.ConclusionThe spatial and temporal heterogeneity of An. gambiae s.l. larval density, adult human-biting rate (HBR) and malaria transmission in Dakar has been confirmed, and the environmental factors associated with this heterogeneity have been identified. These results pave the way for the creation of malaria risk maps and for a focused anti-vectorial control strategy.


PLOS ONE | 2013

Evaluation of the effectiveness of malaria vector control measures in urban settings of Dakar by a specific anopheles salivary biomarker.

Papa Makhtar Drame; Abdoulaye Baniré Diallo; Anne Poinsignon; Olayidé Boussari; Stéphanie Dos Santos; Vanessa Machault; Richard Lalou; Sylvie Cornelie; Jean-Yves LeHesran; Franck Remoue

Standard entomological methods for evaluating the impact of vector control lack sensitivity in low-malaria-risk areas. The detection of human IgG specific to Anopheles gSG6-P1 salivary antigen reflects a direct measure of human–vector contact. This study aimed to assess the effectiveness of a range of vector control measures (VCMs) in urban settings by using this biomarker approach. The study was conducted from October to December 2008 on 2,774 residents of 45 districts of urban Dakar. IgG responses to gSG6-P1 and the use of malaria VCMs highly varied between districts. At the district level, specific IgG levels significantly increased with age and decreased with season and with VCM use. The use of insecticide-treated nets, by drastically reducing specific IgG levels, was by far the most efficient VCM regardless of age, season or exposure level to mosquito bites. The use of spray bombs was also associated with a significant reduction of specific IgG levels, whereas the use of mosquito coils or electric fans/air conditioning did not show a significant effect. Human IgG response to gSG6-P1 as biomarker of vector exposure represents a reliable alternative for accurately assessing the effectiveness of malaria VCM in low-malaria-risk areas. This biomarker tool could be especially relevant for malaria control monitoring and surveillance programmes in low-exposure/low-transmission settings.


Journal of Travel Medicine | 2008

Remote Sensing and Malaria Risk for Military Personnel in Africa

Vanessa Machault; Eve Orlandi-Pradines; Rémy Michel; Frédéric Pagès; Gaëtan Texier; Bruno Pradines; Thierry Fusai; Jean-Paul Boutin; Christophe Rogier

BACKGROUND Nonimmune travelers in malaria-endemic areas are exposed to transmission and may experience clinical malaria attacks during or after their travel despite using antivectorial devices or chemoprophylaxis. Environment plays an essential role in the epidemiology of this disease. Remote-sensed environmental information had not yet been tested as an indicator of malaria risk among nonimmune travelers. METHODS A total of 1,189 personnel from 10 French military companies traveling for a short-duration mission (about 4 mo) in sub-Saharan Africa from February 2004 to February 2006 were enrolled in a prospective longitudinal cohort study. Incidence rate of clinical malaria attacks occurring during or after the mission was analyzed according to individual characteristics, compliance with antimalaria prophylactic measures, and environmental information obtained from earth observation satellites for all the locations visited during the missions. RESULTS Age, the lack of compliance with the chemoprophylaxis, and staying in areas with an average Normalized Difference Vegetation Index higher than 0.35 were risk factors for clinical malaria. CONCLUSIONS Remotely sensed environmental data can provide important planning information on the likely level of malaria risk among nonimmune travelers who could be briefly exposed to malaria transmission and could be used to standardize for the risk of malaria transmission when evaluating the efficacy of antimalaria prophylactic measures.


Malaria Journal | 2012

Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants

Bouh Abdi Khaireh; Sébastien Briolant; Aurélie Pascual; Madjid Mokrane; Vanessa Machault; Christelle Travaillé; Mohamed Abdi Khaireh; Ismaïl Hassan Farah; Habib Moussa Ali; Abdul-Ilah Ahmed Abdi; Souleiman Nour Ayeh; Houssein Youssouf Darar; Lénaïck Ollivier; Mohamed Killeh Waiss; Hervé Bogreau; Christophe Rogier; Bruno Pradines

BackgroundFormerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country.MethodsThe prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax.ResultsThe P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages.ConclusionsThis is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum in the past seven years, which should encourage authorities to improve efforts toward elimination.


ISPRS international journal of geo-information | 2014

Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

Vanessa Machault; André Yébakima; Manuel Etienne; Cécile Vignolles; Philippe Palany; Yves M. Tourre; Marine Guérécheau; Jean-Pierre Lacaux

Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles) using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique.

Collaboration


Dive into the Vanessa Machault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Pagès

Institut de veille sanitaire

View shared research outputs
Top Co-Authors

Avatar

Cécile Vignolles

Centre National D'Etudes Spatiales

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Lacaux

Centre National D'Etudes Spatiales

View shared research outputs
Top Co-Authors

Avatar

Bruno Pradines

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Cheikh Sokhna

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Gaëtan Texier

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Jean-François Trape

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Libasse Gadiaga

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge