Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Martos is active.

Publication


Featured researches published by Vanessa Martos.


Genetics | 2008

Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat (Triticum durum Desf.) Across a Wide Range of Water Availability

Marco Maccaferri; Maria Corinna Sanguineti; Simona Corneti; José Luis Araus Ortega; Moncef Ben Salem; Jordi Bort; Enzo DeAmbrogio; Luis F. García del Moral; Andrea Demontis; Ahmed El-Ahmed; Fouad Maalouf; Hassan Machlab; Vanessa Martos; Marc Moragues; Jihan Motawaj; Miloudi Nachit; N. Nserallah; Hassan Ouabbou; C. Royo; Amor Slama; Roberto Tuberosa

Grain yield is a major goal for the improvement of durum wheat, particularly in drought-prone areas. In this study, the genetic basis of grain yield (GY), heading date (HD), and plant height (PH) was investigated in a durum wheat population of 249 recombinant inbred lines evaluated in 16 environments (10 rainfed and 6 irrigated) characterized by a broad range of water availability and GY (from 5.6 to 58.8 q ha−1). Among the 16 quantitative trait loci (QTL) that affected GY, two major QTL on chromosomes 2BL and 3BS showed significant effects in 8 and 7 environments, with R2 values of 21.5 and 13.8% (mean data of all 16 environments), respectively. In both cases, extensive overlap was observed between the LOD profiles of GY and PH, but not with those for HD. QTL specific for PH were identified on chromosomes 1BS, 3AL, and 7AS. Additionally, three major QTL for HD on chromosomes 2AS, 2BL, and 7BS showed limited or no effects on GY. For both PH and GY, notable epistasis between the chromosome 2BL and 3BS QTL was detected across several environments.


Euphytica | 2007

Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century

C. Royo; Fanny Álvaro; Vanessa Martos; Abdelhamid Ramdani; Julio Isidro; D. Villegas; Luis F. García del Moral

Twelve field experiments comparing 24 durum wheat varieties from three periods—old (<1945), intermediate (1950–1985) and modern (1988–2000)—were carried out in order to ascertain the advances made in durum wheat yield components and related traits in Italian and Spanish germplasm. Grain yield improvements were based on linear increases in the number of grains per m2 and harvest index, while grain weight and biomass remained unchanged. Yield per plant increased at a rate of 0.36 and 0.44% y−1 and the number of grains per m2 improved by 39% and 55% in Italian and Spanish varieties, respectively. The mean rate of increase in the number of grains per m2 was 0.55% y−1. Plants per m2, spikes per plant and grains per spike contributed 20%, 29% and 51%, respectively, to the increase in the number of grains per m2. The enhance of the number of grains per m2 was due to the greater grain set in the modern varieties, since the number of spikelets per spike remained unchanged. Harvest index increased overall by 0.48% y−1 (0.40 and 0.53% y−1 in Italian and Spanish varieties, respectively). Plant height was the trait that suffered the most dramatic changes (it decreased at a rate of −0.81% y−1, with little difference between the varieties of the two countries), as consequence of the presence of the Rht-B1 dwarfing gene. Harvest index and plant height, which were the traits that most contributed to discriminating between periods, remained unchanged from 1980 to 2000. The higher rates of improvement in Spain are discussed in the context of the contrasting strategies followed to improve durum wheat yield in the two countries.


Applied Microbiology and Biotechnology | 2010

Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions

Maria Vassileva; Mercedes Serrano; Vicente Bravo; E. Jurado; Iana Nikolaeva; Vanessa Martos; Nikolay Vassilev

One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties.


Euphytica | 2005

Yield Formation in Mediterranean durum wheats under two contrasting water regimes based on path-coefficient analysis

L. F. García del Moral; Y. Rharrabti; S. Elhani; Vanessa Martos; C. Royo

The components of grain yield are altered by adverse growing conditions as the effects of certain environmental factors on crop growth and yield differ depending upon the developmental stages when these conditions occur. Path-coefficient analysis was used to investigate the main processes influencing grain yield and its formation under Mediterranean conditions. Twenty-five durum wheat genotypes, consisting of four Spanish commercial varieties and 21 inbred lines from the ICARDA durum wheat breeding program, were grown during 1997 and 1998 under both rainfed and irrigated conditions in southern Spain. {P}ath-coefficient analysis revealed that under favourable conditions grain yield depended in equal proportion on the three primary yield components (i.e. spikes m−2, grains spike−1, and mean grain weight), whereas in the rainfed experiments, variations in grain yield were due mainly to spikes m−2 and to a lesser extent to grains spike−1. Compensatory effects were almost absent under irrigated treatments; however, under water shortage, spikes m−2 exerted a negative influence on grain spike−1 due mainly to a negative interrelationship between tiller production and apical development. These compensatory effects could partially explain the restricted success in durum wheat breeding observed in water-limited environments of the Mediterranean region. Under rainfed conditions the number of spikes m−2 depended mainly on the ability for tiller production, whereas in the irrigated experiments the final number of spikes was determined mostly by tiller survival.


Applied Microbiology and Biotechnology | 2015

Unexploited potential of some biotechnological techniques for biofertilizer production and formulation

Nikolay Vassilev; Maria Vassileva; Ana López; Vanessa Martos; Antonia Reyes; Ivana Maksimović; Bettina Eichler-Löbermann; E. Malusà

The massive application of chemical fertilizers to support crop production has resulted in soil, water, and air pollution at a global scale. In the same time, this situation escalated consumers’ concerns regarding quality and safety of food production which, due to increase of fertilizer prices, have provoked corresponding price increase of food products. It is widely accepted that the only solution is to boost exploitation of plant-beneficial microorganisms which in conditions of undisturbed soils play a key role in increasing the availability of minerals that otherwise are inaccessible to plants. This review paper is focused on the employment of microbial inoculants and their production and formulation. Special attention is given to biotechniques that are not fully exploited as tools for biofertilizer manufacturing such as microbial co-cultivation and co-immobilization. Another emerging area includes biotechnological production and combined usage of microorganisms/active natural compounds (biostimulants) such as plant extracts and exudates, compost extracts, and products like strigolactones, which improve not only plant growth and development but also plant-microbial interactions. The most important potential and novel strategies in this field are presented as well as the tendencies that will be developed in the near future.


Journal of the Science of Food and Agriculture | 2013

Biochar of animal origin: a sustainable solution to the global problem of high‐grade rock phosphate scarcity?

Nikolay Vassilev; Eva Martos; Gilberto de Oliveira Mendes; Vanessa Martos; Maria Vassileva

Phosphorus (P) is an essential element for all living organisms. However, in soil-plant systems, this nutrient is the most limiting, leading to frequent applications of soluble P fertilisers. Their excessive use provokes alterations in the natural P cycle, soil biodiversity and ecological equilibrium and is the main reason for the eutrophication of water, with consequences on food safety. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using various waste materials as a source of P and, on the other hand, their solubilisation by selected micro-organisms. This review present results on the solubilisation of animal bone char with high phosphate content by micro-organisms to produce organic acids such as lactic acid, citric acid and itaconic acid. All experiments were performed under conditions of liquid submerged and solid state fermentation processes. Freely suspended and immobilised cells of the corresponding microbial cultures were employed using substrates characterised by low cost and abundance. Other alternative technologies are discussed as well in order to stimulate further studies in this field, bearing in mind the progressive increase in P fertiliser prices based on high global P consumption and the scarcity of rock phosphate reserves.


Cereal Research Communications | 2006

Grain growth and yield formation of durum wheat grown at contrasting latitudes and water regimes in a Mediterranean environment

C. Royo; D. Villegas; Y. Rharrabti; Ricardo Blanco; Vanessa Martos; L. F. García del Moral

A set of ten durum wheat genotypes was grown in experiments conducted under four contrasting Mediterranean conditions during three years to assess the effect of latitude and water regime on grain growth and grain yield formation. The relationship between grain weight and accumulated growing degree-days (GDD) from anthesis was described by a logistic equation and final grain weight (W) and maximum rate (R) and duration (D) of grain filling were calculated from the fitted curves. Thousand kernel weight (TKW) was positively related to grain yield at both latitudes and water regimes, although the contribution of the number of grains per m 2 to final yield was only significant in the south, where environmental constraints likely limited the achievement of a large grain set. Differences in final grain weight between latitudes could be mostly explained by differences in the grain filling rate, while changes on W between water regimes were due to altered grain filling durations. Under northern conditions grain yield was positively associated to grain filling duration but negatively related to the maximum rate of grain filling, while in the south the coefficients of the grain filling curves had little or no effect on final yield. Reductions in grain yield under rainfed conditions were due to the fall in the number of grains per m 2 since TKW was not significantly affected by drought.


Biocontrol Science and Technology | 2014

Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato

Elena Flor-Peregrín; Rosario Azcón; Vanessa Martos; Soledad Verdejo-Lucas; M. Talavera

The effects of mycorrhisation and inoculation with soil bacteria on the disease caused by Meloidogyne incognita on tomato were studied in pots under greenhouse conditions. Efficacy in promoting plant growth and reducing disease severity and final nematode densities were evaluated for two arbuscular mycorrhizal fungi (AMF; Funneliformis mosseae and Rhizophagus irregularis), three soil bacteria with different living strategies (the endophyte Bacillus megaterium, a rhizospheric Pseudomonas putida and the hyperparasite of nematodes Pasteuria penetrans) and combinations of the fungi and bacteria. In M. incognita-infested plants, F. mosseae increased tomato growth more than R. irregularis, and plants inoculated with B. megaterium presented higher shoot fresh weight than with P. putida or P. penetrans, but dual inoculation did not improve tomato growth more than single inoculations. Disease severity and final nematode densities were reduced by F. mosseae compared to non-mycorrhizal plants. B. megaterium and P. penetrans reduced both the root galling and the final nematode densities compared to treatments without bacteria. P. penetrans reduced final nematode densities more than B. megaterium or P. putida. Dual inoculation of AMF and P. penetrans showed the highest efficacy in reducing the final nematode densities in tomato.


Journal of Industrial Microbiology & Biotechnology | 2017

Potential application of glycerol in the production of plant beneficial microorganisms

Nikolay Vassilev; Eligio Malusa; Antonia Reyes Requena; Vanessa Martos; Ana López; Ivana Maksimović; Maria Vassileva

This review highlights the importance of research for development of biofertilizer and biocontrol products based on the use of glycerol for further process scale-up to industrial microbiology. Glycerol can be used successfully in all stages of production of plant beneficial microorganisms. It serves as an excellent substrate in both submerged and solid-state fermentation processes with free and immobilized microbial cells. Glycerol is also one of the most attractive formulation agents that ensures high cell density and viability including in harsh environmental conditions. Future research is discussed to make this inexpensive material a base for industrial production of plant beneficial microorganisms.


Reviews in Environmental Science and Bio\/technology | 2016

Biodiesel by-products and P-solubilizing microorganisms

Nikolay Vassilev; Bettina Eichler-Löbermann; Antonia Reyes Requena; Vanessa Martos; Ana López; Maria Vassileva

Biodiesel derived from renewable biological sources has in recent years emerged as an alternative fuel for transportation sector. Similarly, glycerol, the main co-product of biodiesel production, has received considerable attention as feedstock for producing various value added products including biofertilizers. The aim of this review is to highlight the value-added utilization of glycerol as a substrate in fermentation processes for P-solubilization by free and immobilized cells and as a formulation agent in preparation of commercial products. In the majority of cases, glycerol demonstrates multiple traits and, therefore some routine techniques for P-solubilization when based on glycerol can be attractive from technical and economic point of view.

Collaboration


Dive into the Vanessa Martos's collaboration.

Top Co-Authors

Avatar

Fouad Maalouf

International Center for Agricultural Research in the Dry Areas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Bort

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miloudi Nachit

International Center for Agricultural Research in the Dry Areas

View shared research outputs
Top Co-Authors

Avatar

Hassan Ouabbou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

N. Nserallah

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge