Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Pirrone is active.

Publication


Featured researches published by Vanessa Pirrone.


Brain Research | 2011

Breaking down the barrier: The effects of HIV-1 on the blood–brain barrier

Marianne Strazza; Vanessa Pirrone; Brian Wigdahl; Michael R. Nonnemacher

Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4(+) T cells and cells of the monocyte-macrophage lineage, resulting in immunodeficiency in an infected patient. Along with this immune deficiency, HIV-1 has been linked to a number of neurological symptoms in the absence of opportunistic infections or other co-morbidities, suggesting that HIV-1 is able to cross the blood-brain barrier (BBB), enter the central nervous system (CNS), and cause neurocognitive impairment. HIV-1-infected monocyte-macrophages traverse the BBB and enter the CNS throughout the course of HIV-1 disease. Once in the brain, both free virus and virus-infected cells are able to infect neighboring resident microglia and astrocytes and possibly other cell types. HIV-1-infected cells in both the periphery and the CNS give rise to elevated levels of viral proteins, including gp120, Tat, and Nef, and of host inflammatory mediators such as cytokines and chemokines. It has been shown that the viral proteins may act alone or in concert with host cytokines and chemokines, affecting the integrity of the BBB. The pathological end point of these interactions may facilitate a positive feedback loop resulting in increased penetration of HIV into the CNS. It is proposed in this review that the dysregulation of the BBB during and after neuroinvasion is a critical component of the neuropathogenic process and that dysregulation of this protective barrier is caused by a combination of viral and host factors including secreted viral proteins, components of the inflammatory process, the aging process, therapeutics, and drug or alcohol abuse.


Antiviral Research | 2011

The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1

Vanessa Pirrone; Brian Wigdahl; Fred C. Krebs

Infection by the human immunodeficiency virus type 1 (HIV-1) is an ordered, multistep process involving binding and entry, reverse transcription, integration, viral gene transcription, translation, processing, and finally assembly. Numerous therapeutic and preventive compounds, which are currently available for clinical use or are under preclinical and clinical development, act on at least one of these steps. Polyanionic HIV-1 inhibitors comprise a family of compounds that are generally considered entry inhibitors. The main mechanism of anti-HIV-1 activity associated with these compounds involves electrostatic interactions with HIV-1 glycoprotein 120 that ultimately prevent binding of the virus to target cells. A number of these compounds have been considered for systemic use and for use as microbicides, which are products designed to prevent sexual HIV-1 transmission. These compounds have been studied extensively using in vitro assays of activity, cytotoxicity, and mechanism of action, ex vivo models of HIV-1 transmission, and animal models of in vivo efficacy and toxicity. Three of these polyanionic compounds - cellulose sulfate, carrageenan, and PRO 2000 - were advanced into clinical trials of microbicide safety and efficacy. Although phase I and phase II clinical trials showed these compounds to be safe and well tolerated, none of the phase III trials provided any evidence that these compounds were effective against heterosexual HIV-1 transmission. Furthermore, clinical and in vitro results suggest enhancement of HIV-1 infection in the presence of polyanionic compounds. We discuss the preclinical development of polyanionic HIV-1 inhibitors, the clinical trials of polyanionic compounds used systemically and as topical vaginal microbicides, and the prospects for the future development of these compounds as inhibitors of HIV-1 infection.


Antimicrobial Agents and Chemotherapy | 2011

Combinatorial Approaches to the Prevention and Treatment of HIV-1 Infection

Vanessa Pirrone; Nina Thakkar; Jeffrey M. Jacobson; Brian Wigdahl; Fred C. Krebs

ABSTRACT The discovery of the human immunodeficiency virus type 1 (HIV-1) in 1982 soon led to the identification and development of antiviral compounds to be used in treatment strategies for infected patients. Early in the epidemic, drug monotherapies frequently led to treatment failures because the virus quickly developed resistance to the single drug. Following the advent of highly active antiretroviral therapy (HAART) in 1995, dramatic improvements in HIV-1-infected patient health and survival were realized as more refined combination therapies resulted in reductions in viral loads and increases in CD4+ T-cell counts. In the absence of an effective vaccine, prevention of HIV-1 infection has also gained traction as an approach to curbing the pandemic. The development of compounds as safe and effective microbicides has intensified and has focused on blocking the transmission of HIV-1 during all forms of sexual intercourse. Initial preclinical investigations and clinical trials of microbicides focused on single compounds effective against HIV-1. However, the remarkable successes achieved using combination therapy to treat systemic HIV-1 infection have subsequently stimulated the study and development of combination microbicides that will simultaneously inhibit multiple aspects of the HIV-1 transmission process by targeting incoming viral particles, virus-infected cells, and cells susceptible to HIV-1 infection. This review focuses on existing and developing combination therapies, covering preclinical development, in vitro and in vivo efficacy studies, and subsequent clinical trials. The shift in focus within the microbicide development field from single compounds to combination approaches is also explored.


Journal of Medicinal Chemistry | 2008

Structural Determinants for Affinity Enhancement of a Dual Antagonist Peptide Entry Inhibitor of Human Immunodeficiency Virus Type-1

Hosahudya N. Gopi; M. Umashankara; Vanessa Pirrone; Judith M. LaLonde; Navid Madani; Ferit Tuzer; Sabine Baxter; Isaac Zentner; Simon Cocklin; Navneet Jawanda; Shendra Miller; Arne Schön; Jeffrey C. Klein; Ernesto Freire; Fred C. Krebs; Amos B. Smith; Joseph Sodroski; Irwin M. Chaiken

Structure-activity correlations were investigated for substituted peptide conjugates that function as dual receptor site antagonists of HIV-1 gp120. A series of peptide conjugates were constructed via click reaction of both aryl and alkyl acetylenes with an internally incorporated azidoproline 6 derived from the parent peptide 1 (12p1, RINNIPWSEAMM). Compared to 1, many of these conjugates were found to exhibit several orders of magnitude increase in both affinity for HIV-1 gp120 and inhibition potencies at both the CD4 and coreceptor binding sites of gp120. We sought to determine structural factors in the added triazole grouping responsible for the increased binding affinity and antiviral activity of the dual inhibitor conjugates. We measured peptide conjugate potencies in both kinetic and cell infection assays. High affinity was sterically specific, being exhibited by the cis- but not the trans-triazole. The results demonstrate that aromatic, hydrophobic, and steric features in the residue 6 side-chain are important for increased affinity and inhibition. Optimizing these features provides a basis for developing gp120 dual inhibitors into peptidomimetic and increasingly smaller molecular weight entry antagonist leads.


Journal of Molecular Recognition | 2009

Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120.

Hosahudya N. Gopi; Simon Cocklin; Vanessa Pirrone; Karyn McFadden; Ferit Tuzer; Isaac Zentner; Sandya Ajith; Sabine Baxter; Navneet Jawanda; Fred C. Krebs; Irwin M. Chaiken

In this work, we identified a high affinity and potency metallocene‐containing triazole peptide conjugate that suppresses the interactions of HIV‐1 envelope gp120 at both its CD4 and co‐receptor binding sites. The ferrocene‐peptide conjugate, HNG‐156, was formed by an on‐resin copper‐catalysed [2 + 3] cycloaddition reaction. Surface plasmon resonance interaction analysis revealed that, compared to a previously reported phenyl‐containing triazole conjugate HNG‐105 (105), peptide 156 had a higher direct binding affinity for several subtypes of HIV‐1 gp120 due mainly to the decreased dissociation rate of the conjugate‐gp120 complex. The ferrocene triazole conjugate bound to gp120 of both clade A (92UG037‐08) and clade B (YU‐2 and SF162) virus subtypes with nanomolar KD in direct binding and inhibited the binding of gp120 to soluble CD4 and to antibodies that bind to HIV‐1YU‐2 gp120 at both the CD4 binding site and CD4‐induced binding sites. HNG‐156 showed a close‐to nanomolar IC50 for inhibiting cell infection by HIV‐1BaL whole virus. The dual receptor site antagonist activity and potency of HNG‐156 make it a promising viral envelope inhibitor lead for developing anti‐HIV‐1 treatments. Copyright


Journal of NeuroVirology | 2011

Role of mu-opioids as cofactors in human immunodeficiency virus type 1 disease progression and neuropathogenesis

Anupam Banerjee; Marianne Strazza; Brian Wigdahl; Vanessa Pirrone; Olimpia Meucci; Michael R. Nonnemacher

About one third of acquired immunodeficiency syndrome cases in the USA have been attributed to the use of injected addictive drugs, frequently involving opioids like heroin and morphine, establishing them as significant predisposing risk factors for contracting human immunodeficiency virus type 1 (HIV-1). Accumulating evidence from in vitro and in vivo experimental systems indicates that opioids act in concert with HIV-1 proteins to exacerbate dysregulation of neural and immune cell function and survival through diverse molecular mechanisms. In contrast, the impact of opioid exposure and withdrawal on the viral life cycle and HIV-1 disease progression itself is unclear, with conflicting reports emerging from the simian immunodeficiency virus and simian–human immunodeficiency virus infection models. However, these studies suggest a potential role of opioids in elevated viral production. Because human microglia, astrocytes, CD4+ T lymphocytes, and monocyte-derived macrophages express opioid receptors, it is likely that intracellular signaling events triggered by morphine facilitate enhancement of HIV-1 infection in these target cell populations. This review highlights the biochemical changes that accompany prolonged exposure to and withdrawal from morphine that synergize with HIV-1 proteins to disrupt normal cellular physiological functions especially within the central nervous system. More importantly, it collates evidence from epidemiological studies, animal models, and heterologous cell systems to propose a mechanistic link between such physiological adaptations and direct modulation of HIV-1 production. Understanding the opioid–HIV-1 interface at the molecular level is vitally important in designing better treatment strategies for HIV-1-infected patients who abuse opioids.


Advances in Virology | 2012

Impact of Tat Genetic Variation on HIV-1 Disease

Luna Li; Satinder Dahiya; Sandhya Kortagere; Benjamas Aiamkitsumrit; David Cunningham; Vanessa Pirrone; Michael R. Nonnemacher; Brian Wigdahl

The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined. Genetic variation within tat of different HIV-1 subtypes has been shown to affect the interaction of the viral transactivator with cellular and/or viral proteins, influencing the overall level of transcriptional activation as well as its action as a neurotoxic protein. Consequently, the genetic variability within tat may impact the molecular architecture of functional domains of the Tat protein that may impact HIV pathogenesis and disease. Tat as a therapeutic target for anti-HIV drugs has also been discussed.


Antimicrobial Agents and Chemotherapy | 2012

Antiviral Breadth and Combination Potential of Peptide Triazole HIV-1 Entry Inhibitors

Karyn McFadden; Patricia Fletcher; Fiorella Rossi; Kantharaju; Muddagowda Umashankara; Vanessa Pirrone; Srivats Rajagopal; Hosahudya N. Gopi; Fred C. Krebs; Julio Martín-García; Robin Shattock; Irwin M. Chaiken

ABSTRACT The first stage of human immunodeficiency virus type 1 (HIV-1) infection involves the fusion of viral and host cellular membranes mediated by viral envelope glycoprotein gp120. Inhibitors that specifically target gp120 are gaining increased attention as therapeutics or preventatives to prevent the spread of HIV-1. One promising new group of inhibitors is the peptide triazoles, which bind to gp120 and simultaneously block its interaction with both CD4 and the coreceptor. In this study, we assessed the most potent peptide triazole, HNG-156, for inhibitory breadth, cytotoxicity, and efficacy, both alone and in combination with other antiviral compounds, against HIV-1. HNG-156 inhibited a panel of 16 subtype B and C isolates of HIV-1 in a single-round infection assay. Inhibition of cell infection by replication-competent clinical isolates of HIV-1 was also observed with HNG-156. We found that HNG-156 had a greater than predicted effect when combined with several other entry inhibitors or the reverse transcriptase inhibitor tenofovir. Overall, we find that HNG-156 is noncytotoxic, has a broad inhibition profile, and provides a positive combination with several inhibitors of the HIV-1 life cycle. These results support the pursuit of efficacy and toxicity analyses in more advanced cell and animal models to develop peptide triazole family inhibitors of HIV-1 into antagonists of HIV-1 infection.


BioMed Research International | 2010

A styrene-alt-maleic acid copolymer is an effective inhibitor of R5 and X4 human immunodeficiency virus type 1 infection.

Vanessa Pirrone; Shendra Passic; Brian Wigdahl; Robert F. Rando; Mohamed E. Labib; Fred C. Krebs

An alternating copolymer of styrene and maleic acid (alt-PSMA) differs from other polyanionic antiviral agents in that the negative charges of alt-PSMA are provided by carboxylic acid groups instead of sulfate or sulfonate moieties. We hypothesized that alt-PSMA would have activity against human immunodeficiency virus type 1 (HIV-1) comparable to other polyanions, such as the related compound, poly(sodium 4-styrene sulfonate) (PSS). In assays using cell lines and primary immune cells, alt-PSMA was characterized by low cytotoxicity and effective inhibition of infection by HIV-1 BaL and IIIB as well as clinical isolates of subtypes A, B, and C. In mechanism of action assays, in which each compound was added to cells and subsequently removed prior to HIV-1 infection (“washout” assay), alt-PSMA caused no enhancement of infection, while PSS washout increased infection 70% above control levels. These studies demonstrate that alt-PSMA is an effective HIV-1 inhibitor with properties that warrant further investigation.


Journal of NeuroVirology | 2011

Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment

Luna Li; Benjamas Aiamkitsumrit; Vanessa Pirrone; Michael R. Nonnemacher; Adam Wojno; Shendra Passic; Katherine E. Flaig; Evelyn Kilareski; Brandon Blakey; Jade Ku; Nirzari Parikh; Rushabh Shah; Julio Martín-García; Brian Moldover; Laila Servance; David Downie; Sharon Lewis; Jeffrey M. Jacobson; Dennis L. Kolson; Brian Wigdahl

The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in frequency as disease severity increased. Additionally, the 3T variant correlated with HIV-1-associated dementia. LTR sequences derived by longitudinal sampling of peripheral blood from a single patient in the DrexelMed HIV/AIDS Genetic Analysis Cohort resulted in the detection of the 3T and 5T co-selected SNPs before the onset of neurologic impairment, demonstrating that these SNPs may be useful in predicting HIV-associated neurological complications. The relative fitness of the LTRs containing the 3T and/or 5T co-selected SNPs as they evolve in their native patient-derived LTR backbone structure demonstrated a spectrum of basal and Tat-mediated transcriptional activities using the IIIB-derived Tat and colinear Tat derived from the same molecular clone containing the 3T/5T LTR SNP. In silico predictions utilizing colinear envelope sequence suggested that the patient’s virus evolved from an X4 to an R5 swarm prior to the development of neurological complications and more advanced HIV disease. These results suggest that the HIV-1 genomic swarm may evolve during the course of disease in response to selective pressures that lead to changes in prevalence of specific polymorphisms in the LTR, env, and/or tat that could predict the onset of neurological disease and result in alterations in viral function.

Collaboration


Dive into the Vanessa Pirrone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge