Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Porrini is active.

Publication


Featured researches published by Vanessa Porrini.


Brain | 2012

Late-onset Parkinsonism in NFκB/c-Rel-deficient mice

Cristina Baiguera; Manuela Alghisi; Annalisa Pinna; Arianna Bellucci; Maria Antonietta De Luca; Lucia Frau; Micaela Morelli; Rosaria Ingrassia; Marina Benarese; Vanessa Porrini; Michele Pellitteri; Giuseppe Bertini; Paolo F. Fabene; Sandra Sigala; Maria Grazia Spillantini; Hsiou Chi Liou; PierFranco Spano; Marina Pizzi

Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel−/−) mice developed a Parkinson’s disease-like neuropathology with ageing. At 18 months of age, c-rel−/− mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining. Nigral degeneration was accompanied by a significant loss of dopaminergic terminals and a significant reduction of dopamine and homovanillic acid levels in the striatum. Mice deficient of the c-Rel factor exhibited a marked immunoreactivity for fibrillary α-synuclein in the substantia nigra pars compacta as well as increased expression of divalent metal transporter 1 (DMT1) and iron staining in both the substantia nigra pars compacta and striatum. Aged c-rel−/− mouse brain were characterized by increased microglial reactivity in the basal ganglia, but no astrocytic reaction. In addition, c-rel−/− mice showed age-dependent deficits in locomotor and total activity and various gait-related deficits during a catwalk analysis that were reminiscent of bradykinesia and muscle rigidity. Both locomotor and gait-related deficits recovered in c-rel−/− mice treated with l-3,4-dihydroxyphenylalanine. These data suggest that c-Rel may act as a regulator of the substantia nigra pars compacta resilience to ageing and that aged c-rel−/− mice may be a suitable model of Parkinson’s disease.


Frontiers in Neurology | 2015

NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases.

Annamaria Lanzillotta; Vanessa Porrini; Arianna Bellucci; Marina Benarese; Caterina Branca; Edoardo Parrella; PierFranco Spano; Marina Pizzi

NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel−/− mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.


Neuroscience | 2015

CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid

Vanessa Porrini; Annamaria Lanzillotta; Caterina Branca; Marina Benarese; Edoardo Parrella; Luca Lorenzini; Laura Calzà; R. Flaibani; PierFranco Spano; Bruno P. Imbimbo; Marina Pizzi

Activation of microglia associated with neuroinflammation and loss of phagocytic activity is considered to play a prominent role in the pathogenesis of Alzheimers disease (AD). CHF5074 (CSP-1103) has been shown to improve cognition and reduce brain inflammation in patients with mild cognitive impairment (MCI). CHF5074 was also found to reverse impairments in recognition memory and improve hippocampal long-term potentiation when administered to plaque-free Tg2576 mice (5-month-old) for 4 weeks. Though, no investigation has focused on the consequence of CHF5074 treatment on microglia polarization yet. In this study we evaluated the effect of CHF5074 administration (375 ppm in the diet) to 5-month-old Tg2576 mice on the expression of pro-inflammatory (M1) genes, Interleukin 1 beta (IL-1β), Tumor Necrosis Factor alpha (TNFα) and inducible Nitric Oxide Synthase (iNOS), and anti-inflammatory/phagocytic (M2) markers Mannose Receptor type C 1 (MRC1/CD206), Triggering Receptor Expressed on Myeloid cells 2 (TREM2) and Chitinase 3-like 3 (Ym1). No changes of pro-inflammatory gene transcription but a reduced expression of MRC1/CD206, TREM2 and Ym1 were detected in the hippocampus of young Tg2576 mice receiving normal diet, when compared to wild-type littermates. CHF5074 did not affect the pro-inflammatory transcription but significantly increased the expression of MRC1/CD206 and Ym1. CHF5074 effects appeared to be hippocampus-specific, as the M2 transcripts were only slightly modified in the cerebral cortex. In primary cultures of mouse astrocyte-microglia, CHF5074 totally suppressed the expression of TNF-α, IL-1β and iNOS induced by 10 μM β-amyloid1-42 (Aβ42). Moreover, CHF5074 significantly increased the expression of anti-inflammatory/phagocytic markers MRC1/CD206 and TREM2, reduced by the Aβ42 application alone. The effect of CHF5074 was not reproduced by ibuprofen (3 μM or 500 μM) or R-flurbiprofen (3 μM or 100 μM), as both compounds limited the pro-inflammatory gene expression but did not modify the anti-inflammatory/phagocytic transcription. These data show that CHF5074 specifically drives the expression of microglia M2 markers either in young Tg2576 hippocampus or in primary astrocyte-microglia cultures, suggesting its potential therapeutic efficacy as microglial modulator in the early phase of AD.


Scientific Reports | 2015

Pharmacological targeting of the β-amyloid precursor protein intracellular domain

Caterina Branca; Ilenia Sarnico; Roberta Ruotolo; Annamaria Lanzillotta; Arturo Roberto Viscomi; Marina Benarese; Vanessa Porrini; Luca Lorenzini; Laura Calzà; Bruno P. Imbimbo; Simone Ottonello; Marina Pizzi

Amyloid precursor protein (APP) intracellular domain (AICD) is a product of APP processing with transcriptional modulation activity, whose overexpression causes various Alzheimers disease (AD)-related dysfunctions. Here we report that 1-(3′,4′-dichloro-2-fluoro[1,1′-biphenyl]-4-yl)-cyclopropanecarboxylic acid) (CHF5074), a compound that favorably affects neurodegeneration, neuroinflammation and memory deficit in transgenic mouse models of AD, interacts with the AICD and impairs its nuclear activity. In neuroglioma-APPswe cells, CHF5074 shifted APP cleavage from Aβ42 to the less toxic Aβ38 peptide without affecting APP-C-terminal fragment, nor APP levels. As revealed by photoaffinity labeling, CHF5074 does not interact with γ-secretase, but binds to the AICD and lowers its nuclear translocation. In vivo treatment with CHF5074 reduced AICD occupancy as well as histone H3 acetylation levels and transcriptional output of the AICD-target gene KAI1. The data provide new mechanistic insights on this compound, which is under clinical investigation for AD treatment/prevention, as well as on the contribution of the AICD to AD pathology.


Molecular Biology Reports | 2013

Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells.

Emiliano Cocco; Vanessa Porrini; Manuela Derosas; Veronica Nardi; Giorgio Biasiotto; Federica Maccarinelli; Isabella Zanella

Doxorubicin (DOX) is an anticancer drug with cardiotoxic side effects mostly caused by iron homeostasis dysregulation. Mitochondria are involved in iron trafficking and mitochondrial ferritin (FtMt) was shown to provide protection against cellular iron imbalance. Therefore, we hypothesized that FtMt overexpression could limit DOX effects on iron homeostasis. Heart’s homogenates of DOX-treated C57BL/6 mice were analyzed for cytosolic and mitochondrial iron-related proteins’ expression and activity, revealing high cytosolic ferritin and ferritin-bound iron, low transferrin-receptor 1 and a strong hepcidin upregulation. Mitochondrial iron-related proteins (aconitase, succinate-dehydrogenase, frataxin) seemed, however, unaffected, although a partial inactivation of superoxide dismutase 2 was detected. Importantly, the ectopic expression of FtMt in human HeLa cells partially reverted DOX-induced iron imbalance. Our results, while confirming DOX effects on iron homeostasis, demonstrate that DOX affects more cytosolic than mitochondrial iron metabolism both in murine hearts and human HeLa cells and that FtMt overexpression is able to prevent most of these effects in HeLa cells.


Brain Pathology | 2018

Synapsin III is a key component of α-synuclein fibrils in Lewy bodies of PD brains: Synapsin III in α-Synuclein Fibrils

Francesca Longhena; Gaia Faustini; Tatiana Varanita; Michela Zaltieri; Vanessa Porrini; Isabella Tessari; Pietro Luigi Poliani; Cristina Missale; Barbara Borroni; Alessandro Padovani; Luigi Bubacco; Marina Pizzi; PierFranco Spano; Arianna Bellucci

Lewy bodies (LB) and Lewy neurites (LN), which are primarily composed of α‐synuclein (α‐syn), are neuropathological hallmarks of Parkinsons disease (PD) and dementia with Lewy bodies (DLB). We recently found that the neuronal phosphoprotein synapsin III (syn III) controls dopamine release via cooperation with α‐syn and modulates α‐syn aggregation. Here, we observed that LB and LN, in the substantia nigra of PD patients and hippocampus of one subject with DLB, displayed a marked immunopositivity for syn III. The in situ proximity ligation assay revealed the accumulation of numerous proteinase K‐resistant neuropathological inclusions that contained both α‐syn and syn III in tight association in the brain of affected subjects. Most strikingly, syn III was identified as a component of α‐syn‐positive fibrils in LB‐enriched protein extracts from PD brains. Finally, a positive correlation between syn III and α‐syn levels was detected in the caudate putamen of PD subjects. Collectively, these findings indicate that syn III is a crucial α‐syn interactant and a key component of LB fibrils in the brain of patients affected by PD.


Brain Research | 2016

PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia

Edoardo Parrella; Vanessa Porrini; Rosa Iorio; Marina Benarese; Annamaria Lanzillotta; Mariana Mota; Mariella Fusco; Paolo Tonin; PierFranco Spano; Marina Pizzi

The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD.


Brain Research | 2012

NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress.

Ilenia Sarnico; Caterina Branca; Annamaria Lanzillotta; Vanessa Porrini; Marina Benarese; PierFranco Spano; Marina Pizzi

Brain cells display an amazing ability to respond to several different types of environmental stimuli and integrate this response physiologically. Some of these responses can outlive the original stimulus by days, weeks or even longer. Long-lasting changes in both physiological and pathological conditions occurring in response to external stimuli are almost always mediated by changes in gene expression. To effect these changes, cells have developed an impressive repertoire of signaling systems designed to modulate the activity of numerous transcription factors and epigenetic mechanisms affecting the chromatin structure. Since its initial characterization in the nervous system, NF-κB has shown to respond to multiple signals and elicit pleiotropic activities suggesting that it may play a pivotal role in integration of different types of information within the brain. Ample evidence demonstrates that NF-κB factors are engaged in and necessary for neuronal development and synaptic plasticity, but they also regulate brain response to environmental noxae. By focusing on the complexity of NF-κB transcriptional activity in neuronal cell death, it emerged that the composition of NF-κB active dimers finely tunes the neuronal vulnerability to brain ischemia. Even though we are only beginning to understand the contribution of distinct NF-κB family members to the regulation of gene transcription in the brain, an additional level of regulation of NF-κB activity has emerged as operated by the epigenetic mechanisms modulating histone acetylation. We will discuss NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress and useful drug targets for restoration of brain function. This article is part of a Special Issue entitled: Brain Integration.


International Journal of Molecular Sciences | 2017

Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation

Vanessa Porrini; Ilenia Sarnico; Marina Benarese; Caterina Branca; Mariana Mota; Annamaria Lanzillotta; Arianna Bellucci; Edoardo Parrella; Lara Faggi; PierFranco Spano; Bruno P. Imbimbo; Marina Pizzi

CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer’s disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.


Scientific Reports | 2014

Pharmacological targeting of the Î 2-amyloid precursor protein intracellular domain

Caterina Branca; Ilenia Sarnico; Roberta Ruotolo; Annamaria Lanzillotta; Arturo Roberto Viscomi; Marina Benarese; Vanessa Porrini; Luca Lorenzini; Laura Calzà; Bruno P. Imbimbo; Simone Ottonello; Marina Pizzi

Amyloid precursor protein (APP) intracellular domain (AICD) is a product of APP processing with transcriptional modulation activity, whose overexpression causes various Alzheimers disease (AD)-related dysfunctions. Here we report that 1-(3′,4′-dichloro-2-fluoro[1,1′-biphenyl]-4-yl)-cyclopropanecarboxylic acid) (CHF5074), a compound that favorably affects neurodegeneration, neuroinflammation and memory deficit in transgenic mouse models of AD, interacts with the AICD and impairs its nuclear activity. In neuroglioma-APPswe cells, CHF5074 shifted APP cleavage from Aβ42 to the less toxic Aβ38 peptide without affecting APP-C-terminal fragment, nor APP levels. As revealed by photoaffinity labeling, CHF5074 does not interact with γ-secretase, but binds to the AICD and lowers its nuclear translocation. In vivo treatment with CHF5074 reduced AICD occupancy as well as histone H3 acetylation levels and transcriptional output of the AICD-target gene KAI1. The data provide new mechanistic insights on this compound, which is under clinical investigation for AD treatment/prevention, as well as on the contribution of the AICD to AD pathology.

Collaboration


Dive into the Vanessa Porrini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno P. Imbimbo

Chiesi Farmaceutici S.p.A.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge