Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Wood is active.

Publication


Featured researches published by Vanessa Wood.


Science | 2013

Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries

Martin Ebner; Federica Marone; Marco Stampanoni; Vanessa Wood

Battery Breakdown Although a range of materials can be used for chemically storing electrical charge, many cannot be made into batteries that retain their capacity over many cycles. Failure may be because of secondary reactions, poisoning through the formation of surface coatings, or volumetric changes leading to fracture. Ebner et al. (p. 716, published online 17 October) studied this last scenario in an operating battery using synchrotron x-ray tomographic microscopy, tracking both the chemical changes in the battery and the resulting mechanical changes in a tin oxide model system, which is known to undergo large volume changes. Synchrotron x-ray tomography can be used to study failure modes in an operating battery. High–energy-density materials that undergo conversion and/or alloying reactions hold promise for next-generation lithium (Li) ion batteries. However, these materials experience substantial volume change during electrochemical operation, which causes mechanical fracture of the material and structural disintegration of the electrode, leading to capacity loss. In this work, we use x-ray tomography during battery operation to visualize and quantify the origins and evolution of electrochemical and mechanical degradation. Tomography provides the time-resolved, three-dimensional chemical composition and morphology within individual particles and throughout the electrode. In the model material tin(II) oxide, we witness distributions in onset and rate of core-shell lithiation, crack initiation and growth along preexisting defects, and irreversible distortion of the electrode, highlighting tomography as a tool to guide the development of durable materials and strain-tolerant electrodes.


Nano Reviews | 2010

Colloidal quantum dot light-emitting devices

Vanessa Wood; Vladimir Bulovic

Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.


Nano Letters | 2009

Alternating Current Driven Electroluminescence from ZnSe/ZnS:Mn/ZnS Nanocrystals

Vanessa Wood; Jonathan E. Halpert; Matthew J. Panzer; Moungi G. Bawendi; Vladimir Bulovic

We present a novel technique for room temperature, solution-based fabrication of alternating current thin-film electroluminescent (AC-TFEL) devices using phosphor-doped nanocrystals. Synthesis for stable ZnSe/ZnS:Mn/ZnS nanocrystals that exhibit a quantum yield of 65 +/- 5% is outlined, and their electroluminescence is demonstrated in structures consisting of only wide band gap ceramic layers. Both the nanocrystal and the ceramic films have minimal absorption across the visible light spectrum, enabling us to demonstrate transparent AC-TFEL devices.


ACS Nano | 2009

Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs

Vanessa Wood; Matthew J. Panzer; Jonathan E. Halpert; Jean-Michel Caruge; Moungi G. Bawendi; Vladimir Bulovic

We investigate the effect of the electronic energy level positioning, conductivity, and morphology of metal oxide charge transport layers on the performance of light emitting devices (LEDs) that consist of a colloidally synthesized quantum dot (QD) luminescent film embedded between electron and hole injecting ceramic layers. We demonstrate that understanding of these material properties and their effect on charging processes in QDs enables the systematic design of higher efficiency QD-LEDs and excitation of QDs with different emission colors using the same device structure.


Nano Letters | 2010

Air-Stable Operation of Transparent, Colloidal Quantum Dot Based LEDs with a Unipolar Device Architecture

Vanessa Wood; Matthew J. Panzer; Jean-Michel Caruge; Jonathan E. Halpert; Moungi G. Bawendi; Vladimir Bulovic

We report a novel unipolar light-emitting device architecture that operates using direct-current, field-driven electroluminescence of colloidally synthesized quantum dots (QDs). This device architecture, which is based only on transparent ceramics and QDs, enables emission from different color QDs and, for the first time, constant QD electroluminescence during extended operation in air, unpackaged.


Modelling and Simulation in Materials Science and Engineering | 2013

Validity of the Bruggeman relation for porous electrodes

Ding-Wen Chung; Martin Ebner; David R. Ely; Vanessa Wood; R. Edwin García

The ability to engineer electrode microstructures to increase power and energy densities is critical to the development of high-energy density lithium-ion batteries. Because high tortuosities in porous electrodes are linked to lower delivered energy and power densities, in this paper, we experimentally and computationally study tortuosity and consider possible approaches to decrease it. We investigate the effect of electrode processing on the tortuosity of in-house fabricated porous electrodes, using three-dimensionally reconstructed microstructures obtained by synchrotron x-ray tomography. Computer-generated electrodes are used to understand the experimental findings and assess the impact of particle size distribution and particle packing on tortuosity and reactive area density. We highlight the limitations and tradeoffs of reducing tortuosity and develop a practical set of guidelines for active material manufacture and electrode preparation.


Nano Letters | 2013

Quantification of deep traps in nanocrystal solids, their electronic properties, and their influence on device behavior.

Deniz Bozyigit; Sebastian Volk; Olesya Yarema; Vanessa Wood

We implement three complementary techniques to quantify the number, energy, and electronic properties of trap states in nanocrystal (NC)-based devices. We demonstrate that, for a given technique, the ability to observe traps depends on the Fermi level position, highlighting the importance of a multitechnique approach that probes trap coupling to both the conduction and the valence bands. We then apply our protocol for characterizing traps to quantitatively explain the measured performances of PbS NC-based solar cells.


Nature Communications | 2015

A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells

Deniz Bozyigit; Weyde M. M. Lin; Nuri Yazdani; Olesya Yarema; Vanessa Wood

Improving devices incorporating solution-processed nanocrystal-based semiconductors requires a better understanding of charge transport in these complex, inorganic–organic materials. Here we perform a systematic study on PbS nanocrystal-based diodes using temperature-dependent current–voltage characterization and thermal admittance spectroscopy to develop a model for charge transport that is applicable to different nanocrystal-solids and device architectures. Our analysis confirms that charge transport occurs in states that derive from the quantum-confined electronic levels of the individual nanocrystals and is governed by diffusion-controlled trap-assisted recombination. The current is limited not by the Schottky effect, but by Fermi-level pinning because of trap states that is independent of the electrode–nanocrystal interface. Our model successfully explains the non-trivial trends in charge transport as a function of nanocrystal size and the origins of the trade-offs facing the optimization of nanocrystal-based solar cells. We use the insights from our charge transport model to formulate design guidelines for engineering higher-performance nanocrystal-based devices.


Chemistry of Materials | 2013

Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals

Olesya Yarema; Deniz Bozyigit; Ian Michael Rousseau; Lea V. Nowack; Maksym Yarema; W. Heiss; Vanessa Wood

We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9–10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50–60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting.


Nature | 2016

Soft surfaces of nanomaterials enable strong phonon interactions

Deniz Bozyigit; Nuri Yazdani; Maksym Yarema; Olesya Yarema; Weyde Matteo Mario Lin; Sebastian Volk; Kantawong Vuttivorakulchai; Mathieu Luisier; Fanni Juranyi; Vanessa Wood

Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron–phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10, 11, 12, 13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron–phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron–phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon processes permits the rational selection of nanomaterials, their surface treatments, and the design of devices incorporating them.

Collaboration


Dive into the Vanessa Wood's collaboration.

Top Co-Authors

Avatar

Vladimir Bulovic

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan E. Halpert

MacDiarmid Institute for Advanced Materials and Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge