Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vani Nilakantan is active.

Publication


Featured researches published by Vani Nilakantan.


Free Radical Biology and Medicine | 2010

SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery.

Huan Ling Liang; Filip Sedlic; Zeljko J. Bosnjak; Vani Nilakantan

Generation of excessive reactive oxygen species (ROS) leads to mitochondrial dysfunction, apoptosis, and necrosis in renal ischemia-reperfusion (IR) injury. Previously we showed that lentiviral vector-mediated overexpression of superoxide dismutase-1 (SOD1) in proximal tubular epithelial cells (LLC-PK(1)) reduced cytotoxicity in an in vitro model of IR injury. Here, we examined the effects of SOD1 overexpression on mitochondrial signaling after ATP depletion-recovery (ATP-DR). To examine the role of mitochondrial ROS, a subset of cells was treated with the mitochondrial antioxidant MitoTEMPO. ATP-DR-mediated increase in mitochondrial calcium, loss of mitochondrial membrane potential, and increase in mitochondrial permeability transition pore (MPTP) were attenuated by SOD1 and MitoTEMPO (P<0.01). SOD1 prevented ATP-DR-induced mitochondrial Bax translocation, although the release of proapoptotic proteins from mitochondria was not prevented by SOD1 alone and required the presence of both SOD1 and MitoTEMPO. SOD1 suppressed the increase in c-jun phosphorylation, suggesting that JNK signaling regulates Bax translocation to mitochondria via ROS. ATP-DR-mediated changes in MPTP and mitochondrial signaling increased necrosis and apoptosis, both of which were partially attenuated by SOD1 and MitoTEMPO. These studies show that SOD1 and MitoTEMPO preserve mitochondrial integrity and attenuate ATP-DR-mediated necrosis and apoptosis.


American Journal of Physiology-renal Physiology | 2009

MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion

Huan Ling Liang; Gail Hilton; Jordan Mortensen; Kevin R. Regner; Christopher P. Johnson; Vani Nilakantan

Oxidative stress and apoptosis are important factors in the etiology of renal ischemia-reperfusion (I/R) injury. The present study tested the hypothesis that the cell-permeant SOD mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) protects the kidney from I/R-mediated oxidative stress and apoptosis in vivo. Male Sprague-Dawley rats (175-220 g) underwent renal I/R by bilateral clamping of the renal arteries for 45 min followed by reperfusion for 24 h. To examine the role of reactive oxygen species (ROS) in renal I/R injury, a subset of animals were treated with either saline vehicle (I/R Veh) or MnTMPyP (I/R Mn) (5 mg/kg ip) 30 min before and 6 h after surgery. MnTMPyP significantly attenuated the I/R-mediated increase in serum creatinine levels and decreased tubular epithelial cell damage following I/R. MnTMPyP also decreased TNF-alpha levels, gp(91phox), and lipid peroxidation after I/R. Furthermore, MnTMPyP inhibited the I/R-mediated increase in apoptosis and caspase-3 activation. Interestingly, although MnTMPyP did not increase expression of the antiapoptotic protein Bcl-2, it decreased the expression of the proapoptotic genes Bax and FasL. These results suggest that MnTMPyP is effective in reducing apoptosis associated with renal I/R injury and that multiple signaling mechanisms are involved in ROS-mediated cell death following renal I/R injury.


American Journal of Physiology-renal Physiology | 2008

20-HETE-mediated cytotoxicity and apoptosis in ischemic kidney epithelial cells

Vani Nilakantan; Cheryl Maenpaa; Guangfu Jia; Richard J. Roman; Frank Park

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK(1) cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK(1) cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release (P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 microM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 microM) also inhibited cytotoxicity significantly (P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase (P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells (P < 0.05). This was abolished in the presence of HET-0016 (P < 0.05) or MnTMPyP (P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.


Journal of Surgical Research | 2010

Protective Effect of Lifor Solution in Experimental Renal Ischemia-Reperfusion Injury

Kevin R. Regner; Vani Nilakantan; Robert P. Ryan; Jordan Mortensen; Brian D. Shames; Richard J. Roman

BACKGROUND Improved kidney preservation methods are needed to reduce ischemia-reperfusion (IR) injury in kidney allografts. Lifor is an artificial preservation solution comprised of nutrients, growth factors, and a non-protein oxygen and nutrient carrier. The current study compared the effectiveness of Lifor to University of Wisconsin solution (UW) in protecting rat kidneys from warm IR and cold storage injury. MATERIALS AND METHODS In a warm IR model, rat kidneys were perfused in situ with either saline, UW, or Lifor for 45 min. Renal function and histology were assessed 24 h later. In a cold IR model, kidney slices were cold-stored in saline, UW, or Lifor at 4°C. Kidney injury was assessed by the release of lactate dehydrogenase (LDH) and immunoblot analysis for cleaved caspase-3. RESULTS Lifor perfusion significantly mitigated renal dysfunction and tubular injury at 24 h compared with saline or UW. Lifor and UW prevented LDH release in hypoxic kidney slices in vitro, however activation of caspase-3 following hypoxia-reoxygenation was attenuated only with Lifor. Cold storage with Lifor or UW significantly decreased LDH release from kidney slices or normal rat kidney cells in comparison to storage in saline or culture media. After 24 h of cold storage there was a significant decrease in cleaved caspase-3 in Lifor stored slices compared that seen following cold storage in saline or UW solution. CONCLUSIONS Lifor solution mitigates both warm and cold renal IR and appears to provide greater protection from apoptosis compared with UW solution.


Antioxidants & Redox Signaling | 2008

Reactive Oxygen and Reactive Nitrogen as Signaling Molecules for Caspase 3 Activation in Acute Cardiac Transplant Rejection

Galen M. Pieper; Vani Nilakantan; Thanh K. Nguyen; Gail Hilton; Allan M. Roza; Christopher P. Johnson

Apoptosis is a significant factor in cardiac dysfunction and graft failure in cardiac rejection. In this study, we examined potential signaling molecules responsible for caspase 3 activation in a model of acute cardiac allograft rejection. The roles of reactive oxygen species (ROS) and nitric oxide (NO) were determined in untreated allografts and allograft recipients treated with either cyclosporine (CsA), alpha-phenyl-t-butylnitrone (PBN, a spin-trapping agent), vitamin C (VitC), Mn(III)tetrakis (1-methyl-4-pyridyl)porphyrin); MnTmPyP, a superoxide dismutase (SOD) mimetic), or L-(1-iminoethyl)lysine) (L-NIL), an inhibitor of inducible NO synthase (iNOS) enzyme activity. Graft tissue was taken for measuring superoxide radical production, Western blotting, and direct measurement of caspase 3 activity. Activation of caspase 3 in untreated allografts was revealed by the appearance of cleaved caspase 3 from pro-caspase 3 by Western blotting and functional caspase 3 catalytic activity. CsA or PBN inhibited iNOS expression and caspase 3 activity. VitC and MnTmPyP did not alter iNOS expression or decrease NO levels but did inhibit caspase 3 activity. In contrast, L-NIL completely inhibited the increase in NO production without altering iNOS expression and inhibited caspase 3 activity. The prevention of TUNEL staining by MnTmPyP and L-NIL confirmed downstream effects of superoxide and NO on apoptosis. These studies indicate that both superoxide and NO (precursors of peroxynitrite formation) play a significant role in caspase 3 activation in cardiac allograft rejection.


Molecular and Cellular Biochemistry | 2005

Hierarchical change in antioxidant enzyme gene expression and activity in acute cardiac rejection: role of inducible nitric oxide synthase.

Vani Nilakantan; Xianghua Zhou; Gail Hilton; Allan M. Roza; Mark B. Adams; Christopher P. Johnson; Galen M. Pieper

Reactive oxygen and nitrogen may mediate inflammation injury, but the status of the antioxidant defense system that might influence this process is unknown. In the present study, we examined the expression profile of the antioxidant enzymes, manganese superoxide dismutase (MnSOD), catalase and glutathione peroxidase (GPX) in acutely rejecting cardiac allografts and the potential role of inducible nitric oxide synthase (iNOS) in modulating antioxidant gene expression and activity. Donor hearts from Lewis (isograft) or Wistar-Furth (allograft) rats were transplanted into Lewis recipient rats. A subset of the allografts received l-N6-(1-imino-ethyl) lysine (l-NIL), a specific iNOS inhibitor, beginning the day of surgery until the day of harvesting. Catalase and glutathione peroxidase (GPX) protein levels were significantly decreased by postoperative day 4 (POD4) and postoperative day 5 (POD5), respectively, in allografts compared to isografts. While CuZn superoxide dismutase (CuZn SOD) levels were unchanged, there was a 50% decrease in MnSOD protein in allografts at postoperative day 6 (POD6). The sequential loss in antioxidant protein levels was not due to transcriptional regulation since there was no change in RNA levels for any of the genes tested. l-NIL did not alter catalase protein; however, the loss of MnSOD protein at POD6 was prevented by l-NIL. Consistent with a decrease in antioxidant protein levels, there was a sequential loss in enzyme activity for MnSOD, catalase and GPX. l-NIL however, restored MnSOD and GPX activities but not catalase activity. Treatment with CsA restored both protein and enzyme activities of GPX and MnSOD but not catalase. These results indicate that the loss in MnSOD and GPX protein and activity in allografts occurs via an iNOS-dependent mechanism whereas the decrease in catalase appears to be iNOS-independent. This suggests a differential role for iNOS in regulating post-translational modification of individual antioxidant enzymes in acute cardiac transplantation. (Mol Cell Biochem 270: 39–47, 2005)


Journal of Immunology | 2005

Recombinant p21 Protein Inhibits Lymphocyte Proliferation and Transcription Factors

Ashwani Khanna; Matthew S. Plummer; Vani Nilakantan; Galen M. Pieper

Cellular proliferation determines the events leading to the initiation and development of inflammation, immune activation, cancer, atherogenesis, and other disorders associated with aberrant cell proliferation. Cyclin inhibitor p21 plays a unique role in limiting cell cycle progression. However, its effectiveness can only be demonstrated with direct in vitro and in vivo delivery to control aberrant proliferation. We demonstrate that using a protein-transducing domain p21 protein a) localizes within the nuclear compartments of cells, b) interacts with transcription factors, NF-κB, and NFATs (NFATc and NFATp), and c) inhibits lymphocyte proliferation and expression of proinflammatory cytokines. This study using lymphocyte proliferation as a model suggests that the recombinant p21 protein can directly be delivered as a therapeutic protein to provide a novel, viable, and powerful strategy to limit proliferation, inflammation, alloimmune activation, cancer, and vascular proliferative disorders such as atherosclerosis.


Free Radical Research | 2010

Time-dependant protective effects of mangenese(III) tetrakis (1-methyl-4-pyridyl) porphyrin on mitochondrial function following renal ischemia-reperfusion injury

Vani Nilakantan; Huan Ling Liang; Seenivasan Rajesh; Jordan Mortensen; Karunakaran Chandran

Abstract This study examined the time-dependent effects of a cell permeable SOD mimetic, MnTMPyP, on mitochondrial function in renal ischemia-reperfusion injury (IRI). Male SD rats were subject to either sham operation or bilateral renal ischemia for 45 min followed by reperfusion for 1, 4 or 24 h. A sub-set of animals was treated with either saline vehicle or 5 mg/Kg of MnTMPyP (i.p.). EPR measurements showed that at 1-h reperfusion MnTMPyP prevented a decrease in aconitase activity (p < 0.05) and attenuated the increase in the high spin heme at g = 6 and oxidation of 4Fe4S to 3Fe4S signal at g = 2.015 (p < 0.01). MnTMPyP was effective in preventing loss of mitochondrial complexes and prevented the loss of cytochrome c and Smac/Diablo from mitochondria early in reperfusion. Following 24 h of reperfusion MnTMPyP was effective in attenuating caspase-3 and blocking apoptosis (p < 0.05). In conclusion, MnTMPyP has biphasic effects in renal IRI, inhibiting mitochondrial dysfunction at the early phases of reperfusion and prevention of apoptosis following longer durations of reperfusion.


Biochemical Journal | 2005

Nitric oxide formation in acutely rejecting cardiac allografts correlates with GTP cyclohydrolase I activity

Galen M. Pieper; Vani Nilakantan; Nadine L. N. Halligan; Ashwani Khanna; Gail Hilton; Jeannette Vasquez-Vivar

Inducible nitric oxide synthase (iNOS) is a prominent component of the complex array of mediators in acute graft rejection. While NO production is determined by iNOS expression, BH4 (tetrahydrobiopterin), a cofactor of iNOS synthesized by GTP cyclohydrolase I, has been considered critical in sustaining NO production. In the present study, we examined time-dependent changes in iNOS and GTP cyclohydrolase I in rat cardiac allografts. The increase in iNOS protein and mRNA in allografts was similar at POD4 (post-operative day 4) and POD6. However, the peak increase in intragraft NO level at POD4 was not sustained at POD6. This disparity could not be explained by any decrease in iNOS enzyme activity measured ex vivo with optimal amounts of substrate and cofactors. Lower iNOS activity could be explained by changes in total biopterin levels in allografts at POD4 that was decreased to baseline at POD6. Changes in biopterin production correlated with lower GTP cyclohydrolase I protein levels but not by any change in GTP cyclohydrolase I mRNA. Functionally, allografts displayed bradycardia and distended diastolic and systolic dimensions at POD6 but not at POD4. Likewise, histological rejection scores were increased at POD4 but with a secondary increased stage at POD6. It is hypothesized that the dissimilar amounts of NO at early and later stages of rejection is due to uncoupling of iNOS arising from disproportionate synthesis of BH4. These findings provide insight into a potential pathway regulating NO bioactivity in graft rejection. Such knowledge may potentially assist in the design of newer strategies to prevent acute graft rejection.


Journal of Pharmacology and Experimental Therapeutics | 2004

Treatment with α-Phenyl-N-tert-butylnitrone, a Free Radical-Trapping Agent, Abrogates Inflammatory Cytokine Gene Expression during Alloimmune Activation in Rat Cardiac Allografts

Galen M. Pieper; Vani Nilakantan; Xianghua Zhou; Ashwani Khanna; Christopher P. Johnson; Allan M. Roza; Mark B. Adams; Gail Hilton; Christopher C. Felix

Spin-trapping nitrones such as α-phenyl-N-tert-butylnitrone (PBN) have traditionally been used to trap and stabilize free radicals for detection by electron paramagnetic resonance (EPR) spectroscopy. Unlike classical antioxidants, these agents have never been evaluated therapeutically in allograft transplantation. In the present study, we examined potential mechanisms of action of treatment with PBN in a rat model of acute cardiac allograft transplantation. Graft rejection was determined by histological examination and graft function determined by in situ sonomicrometry. DNA binding for nuclear factor (NF)-κB and activator protein (AP-1) were determined by gel shift assays. Western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was performed for inducible nitric-oxide synthase (iNOS) and inflammatory cytokines. Histological rejection scores were elevated in untreated allografts and decreased by treatment with PBN. In situ sonomicrometry revealed decreased heart rate and distended end diastolic and end systolic segment lengths with rejection. Although PBN did not alter heart rate, it did normalize the distention of both diastolic and systolic cardiac dimension. EPR spectroscopy revealed nitrosylation of myocardial heme protein in untreated allografts that was decreased by treatment with PBN. PBN also decreased iNOS protein and iNOS mRNA. RT-PCR analysis revealed enhanced cytokine gene expression for interferon-γ, interleukin-6, and interleukin-10 in untreated allografts. Expression for these genes was potently inhibited or abolished in recipients treated with PBN. PBN treatment also decreased DNA binding of transcription factors, NF-κB and AP-1. Thus, PBN retains significant anti-inflammatory properties through its action to down-regulate cytokine gene expression that contribute to protection against acute alloimmune activation in cardiac allografts.

Collaboration


Dive into the Vani Nilakantan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Galen M. Pieper

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Gail Hilton

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan M. Roza

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jordan Mortensen

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Brian D. Shames

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Mark B. Adams

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Cheryl Maenpaa

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Huan Ling Liang

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge