Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vani Xavier Oliveira is active.

Publication


Featured researches published by Vani Xavier Oliveira.


Journal of Peptide Science | 2013

A study of the anti-plasmodium activity of angiotensin II analogs.

Mayra Chamlian; Erick L. Bastos; Ceres Maciel; Margareth Lara Capurro; Antonio Miranda; Adriana F. Silva; Marcelo Der Torossian Torres; Vani Xavier Oliveira

Controlling the dissemination of malaria requires the development of new drugs against its etiological agent, a protozoan of the Plasmodium genus. Angiotensin II and its analog peptides exhibit activity against the development of immature and mature sporozoites of Plasmodium gallinaceum. In this study, we report the synthesis and characterization of angiotensin II linear and cyclic analogs with anti‐plasmodium activity. The peptides were synthesized by a conventional solid‐phase method on Merrifields resin using the t‐Boc strategy, purified by RP‐HPLC and characterized by liquid chromatography/ESI (+) MS (LC‐ESI(+)/MS), amino acid analysis, and capillary electrophoresis. Anti‐plasmodium activity was measured in vitro by fluorescence microscopy using propidium iodine uptake as an indicator of cellular damage. The activities of the linear and cyclic peptides are not significantly different (p < 0.05). Kinetics studies indicate that the effects of these peptides on plasmodium viability overtime exhibit a sigmoidal profile and that the system stabilizes after a period of 1 h for all peptides examined. The results were rationalized by partial least‐square analysis, assessing the position‐wise contribution of each amino acid. The highest contribution of polar amino acids and a Lys residue proximal to the C‐terminus, as well as that of hydrophobic amino acids in the N‐terminus, suggests that the mechanism underlying the anti‐malarial activity of these peptides is attributed to its amphiphilic character. Copyright


Journal of Peptide Science | 2014

Antiplasmodial activity study of angiotensin II via Ala scan analogs

Adriana F. Silva; Erick L. Bastos; Marcelo Der Torossian Torres; André Luis Costa-da-Silva; Rafaella Sayuri Ioshino; Margareth Lara Capurro; Flávio Lopes Alves; Antonio Miranda; Renata F. F. Vieira; Vani Xavier Oliveira

Angiotensin II (AII) as well as analog peptides shows antimalarial activity against Plasmodium gallinaceum and Plasmodium falciparum, but the exact mechanism of action is still unknown. This work presents the solid‐phase synthesis and characterization of eight peptides corresponding to the alanine scanning series of AII plus the amide‐capped derivative and the evaluation of the antiplasmodial activity of these peptides against mature P. gallinaceum sporozoites. The Ala screening data indicates that the replacement of either the Ile5 or the His6 residues causes minor effects on the in vitro antiplasmodial activity compared with AII, i.e. AII (88%), [Ala6]‐AII (79%), and [Ala5]‐AII (75%). Analogs [Ala3]‐AII, [Ala1]‐AII, and AII‐NH2 showed antiplasmodial activity around 65%, whereas the activity of the [Ala8]‐AII, [Ala7]‐AII, [Ala4]‐AII, and [Ala2]‐AII analogs is lower than 45%. Circular dichroism data suggest that AII and the most active analogs adopt a β‐fold conformation in different solutions. All AII analogs, except [Ala4]‐AII and [Ala8]‐AII, show contractile responses and interact with the AT1 receptor, [Ala5]‐AII and [Ala6]‐AII. In conclusion, this approach is helpful to understand the contribution of each amino acid residue to the bioactivity of AII, opening new perspectives toward the design of new sporozoiticidal compounds. Copyright


Peptides | 2013

Hematopoietic stem cell expansion caused by a synthetic fragment of leptin

Carol C. Dias; Amanda Nogueira-Pedro; Christiano M.V. Barbosa; Antonio C. Ribeiro-Filho; Frederick Wasinski; Ronaldo C. Araujo; Vani Xavier Oliveira; Antonio Miranda; Edgar J. Paredes-Gamero

Leptin is a cytokine that regulates food intake, energy expenditure and hematopoiesis. Based on the tridimensional structure of the human leptin molecule, six fragments have been synthesized, (Ac-Lep23-47-NH2, [LEP1]; Ac-Lep48-71-NH2, [LEP2]; Ac-Lep72-88-NH2, [LEP3]; Ac-Lep92-115-NH2, [LEP4], Ac-[Ser(117)]-Lep116-140-NH2, [LEP5] and Ac-Lep141-164-NH2, [LEP6]), and their effects on hematopoiesis were evaluated. The mice were treated with 1mg/kg LEP5 for 3 days. The mature and primitive hematopoietic populations were quantified. We observed that the mature populations from the bone marrow and spleen were not affected by LEP5. However, the peptide caused at least a two-fold increase in the number of hematopoietic stem cells, the most primitive population of the bone marrow. Additionally, the number of granulocyte/macrophage colony-forming units produced by bone marrow cells in methylcellulose also increased by 40% after treatment with LEP5, and the leptin receptor was activated. These results show that the leptin fragment LEP5 is a positive modulator of the in vivo expansion of hematopoietic stem cells.


Chemical Biology & Drug Design | 2015

Antimalarial Effect of 3-Methoxy-1,2-Dioxetanes on the Erythrocytic Cycle of Plasmodium falciparum.

N. Lopes; Ariane M. Yoshitake; Adriana F. Silva; Vani Xavier Oliveira; Leandro S. Silva; Ana Acacia S. Pinheiro; Luiz Francisco Monteiro Leite Ciscato

The antimalarial activity of peroxides most likely originates from their interaction with iron(II) species located inside the malaria parasite, which forms destructive radical species through a Fenton‐like mechanism. This article reports the first evaluation of the in vitro antimalarial activity of three peroxides of the class 1,2‐dioxetanes against Plasmodium falciparum; the results reveal that the studied 3‐methoxy‐1,2‐dioxetanes display significant antimalarial activity, at a similar level as artemisinin and also that their reactivity toward iron(II) correlate linearly with their antimalarial activity.


Experimental Parasitology | 2015

Effects of the angiotensin II Ala-scan analogs in erythrocytic cycle of Plasmodium falciparum (in vitro) and Plasmodium gallinaceum (ex vivo).

Adriana F. Silva; Leandro S. Silva; Flávio Lopes Alves; Marcelo Der TorossianTorres; Ana Acacia de SáPinheiro; Antonio Miranda; Margareth LaraCapurro; Vani Xavier Oliveira

The anti-plasmodium activity of angiotensin II and its analogs have been described in different plasmodium species. Here we synthesized angiotensin II Ala-scan analogs to verify peptide-parasite invasion preservation with residue replacements. The analogs were synthesized by 9-fluorenylmethoxycarbonyl (Fmoc) and tert-butyloxycarbonyl (t-Boc) solid phase methods, purified by liquid chromatography and characterized by mass spectrometry. The results obtained in Plasmodium falciparum assays indicated that all analogs presented some influence in parasite invasion, except [Ala(4)]-Ang II (18% of anti-plasmodium activity) that was not statistically different from control. Although [Ala(8)]-Ang II presented a lower biological activity (20%), it was statistically different from control. The most relevant finding was that [Ala(5)]-Ang II preserved activity (45%) relative to Ang II (47%). In the results of Plasmodium gallinaceum assays all analogs were not statistically different from control, except [Ala(6)]-Ang II, which was able to reduce the parasitemia about 49%. This approach provides insight for understanding the importance of each amino acid on the native Ang II sequence and provides a new direction for the design of potential chemotherapeutic agents without pressor activity.


Scientific Reports | 2017

Angiotensin II-derived constrained peptides with antiplasmodial activity and suppressed vasoconstriction

Adriana F. Silva; Marcelo Der Torossian Torres; Leandro S. Silva; Flávio Lopes Alves; Ana Acacia S. Pinheiro; Antonio Miranda; Margareth Lara Capurro; César de la Fuente-Núñez; Vani Xavier Oliveira

Angiotensin II (Ang II) is a natural mammalian hormone that has been described to exhibit antiplasmodial activity therefore constituting a promising alternative for the treatment of malaria. Despite its promise, the development of Ang II as an antimalarial is limited by its potent induction of vasoconstriction and its rapid degradation within minutes. Here, we used peptide design to perform targeted chemical modifications to Ang II to generate conformationally restricted (disulfide-crosslinked) peptide derivatives with suppressed vasoconstrictor activity and increased stability. Designed constrained peptides were synthesized chemically and then tested for antiplasmodial activity. Two lead constrained peptides were identified (i.e., peptides 1 and 2), each composed of 10 amino acid residues. These peptides exhibited very promising activity in both our Plasmodium gallinaceum (>80%) and Plasmodium falciparum (>40%) models, an activity that was equivalent to that of Ang II, and led to complete suppression of vasoconstriction. In addition, peptide 5 exhibited selective activity towards the pre-erythrocytic stage (98% of activity against P. gallinaceum), thus suggesting that it may be possible to design peptides that target specific stages of the malaria life cycle. The Ang II derived stable scaffolds presented here may provide the basis for development of a new generation of peptide-based drugs for the treatment of malaria.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2017

Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells

Caroline Martins Sandanielo Marques; Emilene Arusievicz Nunes; Larissa Lago; Cibele Nicolaski Pedron; Tânia Maria Manieri; Roseli Hiromi Sato; Vani Xavier Oliveira; Giselle Cerchiaro

Glucose, in the presence of reactive oxygen species (ROS), acts as an as an oxidative agent and drives deleterious processes in Diabetes Mellitus. We have studied the mechanism and the toxicological effects of glucose-dependent glycoxidation reactions driven by copper and ROS, using a model peptide based on the exposed sequence of Human Serum Albumin (HSA) and containing a lysine residue susceptible to copper complexation. The main products of these reactions are Advanced Glycation End-products (AGEs). Carboxymethyl lysine and pyrraline condensed on the model peptide, generating a Modified Peptide (MP). These products were isolated, purified, and tested on cultured motor neuron cells. We observed DNA damage, enhancement of membrane roughness, and formation of domes. We evaluated nuclear abnormalities by the cytokinesis-blocked micronucleus assay and we measured cytostatic and cytotoxic effects, chromosomal breakage, nuclear abnormalities, and cell death. AGEs formed by glycoxidation caused large micronucleus aberrations, apoptosis, and large-scale nuclear abnormalities, even at low concentrations.


International Journal of Peptide Research and Therapeutics | 2014

Effects of Amino Acid Deletion on the Antiplasmodial Activity of Angiotensin II

Luiz Henrique Rodrigues Ferreira; Adriana F. Silva; Marcelo Der Torossian Torres; Cibele Nicolaski Pedron; Margareth Lara Capurro; Flávio Lopes Alves; Antonio Miranda; Vani Xavier Oliveira

Malaria is an infectious disease for which effective treatment and prevention strategies remain limited. Our group recently reported that angiotensin II (AII) presents antiplasmodial activity and inhibits the development of Plasmodium gallinaceum in Aedes aegypti. However, details concerning role of each amino acid residue in the antiplasmodial activity of the peptide and information about the minimal structure responsible for this activity remain unknown. In this work, we investigated the effects of specific deletions (i.e., mono-, di-, tri- and tetra-deletions) of AII amino acids on the antiplasmodial activity of this molecule. The peptides were synthesized on solid phase method using the t-Boc strategy, purified using high performance liquid chromatography and characterized using mass spectrometry. The lytic activity of the peptides was assessed in vitro using mature sporozoites extracted from the salivary glands of infected Aedes aegypti mosquitoes. The results demonstrate that all of the deletions reduced antiplasmodial activity compared to native AII and that active analogs tend to adopt β-turn conformations; however, the deletion of bulky hydrophobic residues causes greater reductions of bioactivity than the deletion of hydrophilic residues. Corroborating previous studies, we observed that analog extremities are susceptible to changes and can be carefully modified without compromising the activity of this compound. This research contributes to our understanding of the role of each AII amino acid residue in activity against Plasmodium gallinaceum and identifies two short analogs with similar antiplasmodial activity to AII. These analogs may be candidates for additional antimalarial assays because they are inexpensive and easy to synthesize.


Journal of Inorganic Biochemistry | 2012

Copper(II) complexation to 1-octarepeat peptide from a prion protein: Insights from theoretical and experimental UV-visible studies☆

Nathalia Villa dos Santos; Adriana F. Silva; Vani Xavier Oliveira; Paula Homem-de-Mello; Giselle Cerchiaro

The octarepeat domain in cellular prion protein (PrP(C)) has attracted much attention over the last 10 years because of its importance in the complexation of copper with PrP(C). The aim of this research was to study the UV-vis spectra of a peptide similar to the 1-repeat of the octarepeat region in PrP(C) using experimental and theoretical approaches and to gain insight into the complexation of the PrP(C) octarepeat domain with copper(II) ions in solution. We found that the copper atom was responsible for the peptide conformation, which allows for charge transfers between its two terminal residues.


Chemical Biology & Drug Design | 2018

Anticancer activity of VmCT1 analogs against MCF‐7 cells

Cibele Nicolaski Pedron; Gislaine Patricia de Andrade; Roseli Hiromi Sato; Marcelo Der Torossian Torres; Giselle Cerchiaro; Anderson Orzari Ribeiro; Vani Xavier Oliveira

Antimicrobial peptides are considered promising drug candidates due to their broad range of activity. VmCT1 (Phe–Leu–Gly–Ala–Leu–Trp–Asn–Val–Ala–Lys–Ser–Val–Phe–NH2) is an α‐helical antimicrobial peptide that was obtained from the Vaejovis mexicanus smithi scorpion venom. Some of its analogs showed to be as antimicrobial as the wild type, and they were designed for understanding the influence of physiochemical parameters on antimicrobial and hemolytic activity. Some cationic antimicrobial peptides exhibit anticancer activity so VmCT1 analogs were tested to verify the anticancer activity of this family of peptides. The analogs were synthesized, purified, characterized, and the conformational studies were performed. The anticancer activity was assessed against MCF‐7 mammary cancer cells. The results indicated that [Glu]7‐VmCT1‐NH2, [Lys]3‐VmCT1‐NH2, and [Lys]7‐VmCT1‐NH2 analogs presented moderated helical tendency (0.23–0.61) and tendency of anticancer activity at 25 μmol/L in 24 hr of experiment; and [Trp]9‐VmCT1‐NH2 analog that presented low helical tendency and moderated anticancer activity at 50 μmol/L. These results demonstrated that single substitutions on VmCT1 led to different physicochemical features and could assist on the understanding of anticancer activity of this peptide family.

Collaboration


Dive into the Vani Xavier Oliveira's collaboration.

Top Co-Authors

Avatar

Adriana F. Silva

Universidade Federal do ABC

View shared research outputs
Top Co-Authors

Avatar

Antonio Miranda

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flávio Lopes Alves

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leandro S. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Ana Acacia S. Pinheiro

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giselle Cerchiaro

Universidade Federal do ABC

View shared research outputs
Researchain Logo
Decentralizing Knowledge