Vânia M. Moreira
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vânia M. Moreira.
Journal of Cheminformatics | 2013
Francesco Napolitano; Yan Zhao; Vânia M. Moreira; Roberto Tagliaferri; Juha Kere; Mauro D’Amato; Dario Greco
Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
Natural Product Reports | 2012
Jorge A. R. Salvador; Vânia M. Moreira; Bruno M.F. Gonçalves; Ana S. Leal; Yongkui Jing
This review highlights the potential of natural and semisynthetic ursane-type triterpenoids as candidates for the design of multi-target bioactive compounds, with focus on their anticancer effects. A brief illustration of the biosynthesis, sources, and general biological effects of the main classes of naturally occurring pentacyclic triterpenoids (PTs) are provided.
Steroids | 2007
Vânia M. Moreira; Tadas S. Vasaitis; Vincent C. O. Njar; Jorge A. R. Salvador
A series of novel 1H- and 2H-indazole derivatives of the commercially available dehydroepiandrosterone acetate have been synthesized and tested for inhibition of human cytochrome 17alpha-hydroxylase-C(17,20)-lyase (CYP17), androgen receptor (AR) binding affinity, and cytotoxic potential against three prostate cancer (PC) cell lines.
Current Medicinal Chemistry | 2008
Vânia M. Moreira; J. A.R. Salvador; T. S. Vasaitis; V. C.O. Njar
It is almost 70 years since the discovery by Huggins et al. that androgens are essential for prostate cancer (PC) growth and progression, and there has been about 30 years experience using ketoconazole for PC therapy. Since then we have come a long way in learning about the disease and developing new strategies to approach it, among which is cytochrome 17alpha-hydroxylase-C(17,20)-lyase (CYP17) inhibition. This review focuses on the efforts to find prospective CYP17 inhibitors, both steroidal and nonsteroidal, in the absence of a 3D structure of the enzyme. It covers almost 4 decades of literature with highlights on the most significant achievements in this area, providing insight into PC pathophysiology, management and treatment options.
International Journal of Molecular Sciences | 2013
Adyary Fallarero; Malena Skogman; Janni Kujala; Mohanathas Rajaratnam; Vânia M. Moreira; Jari Yli-Kauhaluoma; Pia Vuorela
Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1), (+)-dehydroabietic acid (2) and (+)-dehydroabietylamine (3) that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+)-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values) and it was best tolerated by three different mammalian cell lines. Since (+)-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates.
European Journal of Medicinal Chemistry | 2013
Vânia M. Moreira; Jorge A. R. Salvador; Sérgio Simões; Federica Destro; Riccardo Gavioli
A series of novel oleanane-type pentacyclic triterpenoids bearing a boronate ester moiety at C3 have been synthesized by palladium-catalyzed cross-coupling of bis(pinacolato)diboron with vinyl triflates, in the presence of base, and these compounds were fully characterized by 1D and 2D NMR techniques. Evaluation of their antiproliferative effects on a panel of hematological-based and solid tumor cell lines identified three active oleanolic vinyl boronates that inhibited the growth of leukemia (Jurkat, K562), Burkitts lymphoma (Jijoye), cervix (Hela), colon (SW480), and ovary (SKOV-3) cancer cells without concomitant inhibition of non-tumoral human fibroblasts. Their mechanisms of action were investigated on the leukemia Jurkat cell line. The results show that the incorporation of boron in the oleanolic acid core combined with the presence of amide bonds afforded compounds with desirable biological effects such as apoptosis induction and inhibition of proteasomal activity on tumor cells, which makes them potential templates for further development in the anticancer drug setting.
Journal of Natural Products | 2016
Minni Pirttimaa; Abedelmajeed Nasereddin; Dmitry Kopelyanskiy; Marcel Kaiser; Jari Yli-Kauhaluoma; Kirsi-Marja Oksman-Caldentey; Reto Brun; Charles L. Jaffe; Vânia M. Moreira; Sami Alakurtti
Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.
Journal of Natural Products | 2016
Mirka Laavola; Raisa Haavikko; Mari Hämäläinen; Tiina Leppänen; Riina Nieminen; Sami Alakurtti; Vânia M. Moreira; Jari Yli-Kauhaluoma; Eeva Moilanen
Betulin is a pharmacologically active triterpenoid found in the bark of the birch tree (Betula sp. L.). Betulin and betulinic acid are structurally related to anti-inflammatory steroids, but little is known about their potential anti-inflammatory properties. In the present study, the inflammatory gene expression and the anti-inflammatory properties of betulin, betulinic acid, and 16 semisynthetic betulin derivatives were investigated. Betulin derivatives 3, 4, and 5 selectively inhibited the expression of the inducible nitric oxide synthase (iNOS) in a post-transcriptional manner. They also inhibited nitric oxide (NO) production but had no effect on the other inflammatory factors studied. More interestingly, a new anti-inflammatory betulin derivative 9 with a wide-spectrum anti-inflammatory activity was discovered. Compound 9 was found to suppress the expression of cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), as well as that of prostaglandin synthase-2 (COX-2) in addition to iNOS. The in vivo anti-inflammatory effect of compound 9 was indicated via significant suppression of the carrageenan-induced paw inflammation in mice. The results show, for the first time, that the pyrazole-fused betulin derivative (9) and related compounds have anti-inflammatory properties that could be utilized in drug development.
European Journal of Medicinal Chemistry | 2015
Suvi Manner; Mikko Vahermo; Malena Skogman; Sara Krogerus; Pia Vuorela; Jari Yli-Kauhaluoma; Adyary Fallarero; Vânia M. Moreira
The combination of the dehydroabietic acid scaffold with different amino acids resulted in the discovery of a new class of hybrid compounds that targets both planktonic and biofilms bacteria in Staphylococcus aureus strains and are far more potent anti-biofilm agents than conventional antibiotics. Unlike dehydroabietic acid, these compounds can disrupt biofilms within a short time period and compromise the integrity of the bacterial membrane. Two of the compounds identified in our study are the most potent abietane-type anti-biofilm agents reported so far and display robust activity against pre-formed biofilms at concentrations only 3-6-fold higher than those required to inhibit biofilm formation. Their easy preparation based on proteolysis-resistant d- and unusual amino acids makes them useful chemical probes to gain a deeper understanding of bacterial biofilms and outstanding candidates for further development into new drugs to fight infections.
Steroids | 2011
Vânia M. Moreira; Jorge A. R. Salvador; Ana Matos Beja; J. A. Paixão
The synthesis and structural elucidation, by 1D and 2D NMR and X-ray diffraction techniques, of novel E/Z 16-azolylmethylene-17-oxoandrostanes 2-9 prepared from the Vilsmeier-Hack reaction product 17-chloro-16-formylandrosta-5,16-dien-3β-yl acetate 1 is reported. The reaction proceeds with pyrrole and pyrrole-alike nitrogen heterocycles such as 7-azaindole, indole, and 3-methylindole, in DMF, at 80°C, in the presence of K(2)CO(3), and allowed the attachment of privileged heterocyclic moieties, through the nitrogen atom to the steroid core at C16 via a methine carbon bridge, which is unprecedented in the literature and of potential synthetic and biological interest. Considerations on the possible reaction mechanism are included. All the synthesized compounds are new and are currently being tested for biological activities.