Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanina Vergoz is active.

Publication


Featured researches published by Vanina Vergoz.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Queen pheromone modulates brain dopamine function in worker honey bees

Kyle T. Beggs; Kelly A. Glendining; Nicola M. Marechal; Vanina Vergoz; Ikumi Nakamura; Keith N. Slessor; Alison R. Mercer

Honey bee queens produce a sophisticated array of chemical signals (pheromones) that influence both the behavior and physiology of their nest mates. Most striking are the effects of queen mandibular pheromone (QMP), a chemical blend that induces young workers to feed and groom the queen and primes bees to perform colony-related tasks. But how does this pheromone operate at the cellular level? This study reveals that QMP has profound effects on dopamine pathways in the brain, pathways that play a central role in behavioral regulation and motor control. In young worker bees, dopamine levels, levels of dopamine receptor gene expression, and cellular responses to this amine are all affected by QMP. We identify homovanillyl alcohol as a key contributor to these effects and provide evidence linking QMP-induced changes in the brain to changes at a behavioral level. This study offers exciting insights into the mechanisms through which QMP operates and a deeper understanding of the queens ability to regulate the behavior of her offspring.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Peripheral modulation of worker bee responses to queen mandibular pheromone

Vanina Vergoz; H. James McQuillan; Lisa H. Geddes; Kiri Pullar; Brad J. Nicholson; Michael G. Paulin; Alison R. Mercer

It is generally accepted that young worker bees (Apis mellifera L.) are highly attracted to queen mandibular pheromone (QMP). Our results challenge this widely held view. We have found that unless young workers are exposed to QMP early in adult life, they, like foragers, avoid contact with this pheromone. Our data indicate that responses to QMP are regulated peripherally, at the level of the antennal sensory neurons, and that a window of opportunity exists in which QMP can alter a young bees response to this critically important pheromone. Exposing young bees to QMP from the time of adult emergence reduces expression in the antennae of the D1-like dopamine receptor gene, Amdop1. Levels of Amdop3 transcript, on the other hand, and of the octopamine receptor gene Amoa1, are significantly higher in the antennae of bees strongly attracted to QMP than in bees showing no attraction to this pheromone. A decline in QMP attraction with age is accompanied by a fall in expression in worker antennae of the D2-like dopamine receptor, AmDOP3, a receptor that is selectively activated by QMP. Taken together, our findings suggest that QMPs actions peripherally not only suppress avoidance behavior, but also enhance attraction to QMP, thereby facilitating attendance of the queen.


Insect Molecular Biology | 2012

Biogenic amine receptor gene expression in the ovarian tissue of the honey bee Apis mellifera.

Vanina Vergoz; Julianne Lim; Benjamin P. Oldroyd

In the honey bee Apis mellifera loss of the queen from a colony induces increased levels of the biogenic amine dopamine in the brain of workers, and this elevation is correlated with ovary activation. In the present study we use real‐time quantitative PCR to investigate expression of five biogenic amine receptor genes. We show that biogenic amine receptors are expressed in ovarian tissue, and that their expression is strongly influenced by the presence or absence of a queen in the colony. In contrast to the brain, where all three dopamine receptors are expressed, only two dopamine receptors are expressed in the ovaries, and their expression is strongly correlated with the reproductive status of workers. We conclude that biogenic amine receptors are expressed in the ovaries and are likely to be directly influential in the regulation of worker sterility in honey bees.


BMC Genomics | 2015

RNA-sequencing elucidates the regulation of behavioural transitions associated with the mating process in honey bee queens

Fabio Manfredini; Mark J. F. Brown; Vanina Vergoz; Benjamin P. Oldroyd

BackgroundMating is a complex process, which is frequently associated with behavioural and physiological changes. However, understanding of the genetic underpinnings of these changes is limited. Honey bees are both a model system in behavioural genomics, and the dominant managed pollinator of human crops; consequently understanding the mating process has both pure and applied value. We used next-generation transcriptomics to probe changes in gene expression in the brains of honey bee queens, as they transition from virgin to mated reproductive status. In addition, we used CO2-narcosis, which induces oviposition without mating, to isolate the process of reproductive maturation.ResultsThe mating process produced significant changes in the expression of vision, chemo-reception, metabolic, and immune-related genes. Differential expression of these genes maps clearly onto known behavioural and physiological changes that occur during the transition from being a virgin queen to a newly-mated queen. A subset of these changes in gene expression were also detected in CO2-treated queens, as predicted from previous physiological studies. In addition, we compared our results to previous studies that used microarray techniques across a range of experimental time-points. Changes in expression of immune- and vision-related genes were common to all studies, supporting an involvement of these groups of genes in the mating process.ConclusionsOur study is an important step in understanding the molecular mechanisms regulating post-mating behavioural transitions in a natural system. The weak overlap in patterns of gene expression with previous studies demonstrates the high sensitivity of genome-wide approaches. Thus, while we build on previous microarray studies that explored post-mating changes in honey bees, the broader experimental design, use of RNA-sequencing, and focus on Australian honey bees, which remain free from the devastating parasite Varroa destructor, in the current study, provide unique insights into the biology of the mating process in honey bees.


Archive | 2012

Dopamine Signaling in the Bee

Julie A. Mustard; Vanina Vergoz; Karen A. Mesce; Kathleen A. Klukas; Kyle T. Beggs; Lisa H. Geddes; H. James McQuillan; Alison R. Mercer

Dopamine (DA) is a signaling molecule derived from the amino acid tyrosine. It is an important neuromodulator, neurotransmitter and neurohormone in invertebrates as well as in vertebrates and numerous studies suggest roles for this amine in motor function, learning and memory, aggression, arousal and sleep, and in a number of other behaviors. A growing body of evidence suggests that DA plays a diversity of roles also in Apis mellifera. Three honey bee DA receptor genes have been cloned and characterized. In this chapter we focus on their likely involvement in the regulation of locomotor activity, ovary development, and olfactory learning and memory.


Insect Molecular Biology | 2012

Effects of natural mating and CO2 narcosis on biogenic amine receptor gene expression in the ovaries and brain of queen honey bees, Apis mellifera

Vanina Vergoz; Julianne Lim; Michael Duncan; Guénaël Cabanes; Benjamin P. Oldroyd

A queen honey bee mates at ∼6 days of age, storing the sperm in her spermatheca for life. Mating is associated with profound changes in the behaviour and physiology of the queen but the mechanisms underlying these changes are poorly understood. What is known is that the presence of semen in the oviducts and spermatheca is insufficient to initiate laying, and that copulation or CO2 narcosis is necessary for ovary activation. In this study we use real‐time quantitative PCR to investigate the expression of biogenic amine receptor genes in the brain and ovarian tissue of queens in relation to their reproductive status. We show that dopamine, octopamine and serotonin receptor genes are expressed in the ovaries of queens, and that natural mating, CO2 narcosis, and the presence of semen in the spermatheca differentially affect their expression. We suggest that these changes may be central to the hormonal cascades that are necessary to initiate oogenesis.


Insect Molecular Biology | 2016

Queen pheromone regulates programmed cell death in the honey bee worker ovary

Isobel Ronai; Benjamin P. Oldroyd; Vanina Vergoz

In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid‐oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue.


Proceedings of the Royal Society B: Biological Sciences | 2017

The dynamic association between ovariole loss and sterility in adult honeybee workers

Isobel Ronai; Michael H. Allsopp; Ken Tan; Shihao Dong; Xiwen Liu; Vanina Vergoz; Benjamin P. Oldroyd

In the social insects, ovary state (the presence or absence of mature oocytes) and ovary size (the number of ovarioles) are often used as proxies for the reproductive capacity of an individual worker. Ovary size is assumed to be fixed post-eclosion whereas ovary state is demonstrably plastic post-eclosion. Here, we show that in fact ovary size declines as honeybee workers age. This finding is robust across two honeybee species: Apis mellifera and A. cerana. The ovariole loss is likely to be due to the regression of particular ovarioles via programmed cell death. We also provide further support for the observation that honeybee workers with activated ovaries (mature oocytes present) most commonly have five ovarioles rather than a greater or smaller number. This result suggests that workers with more than five ovarioles are unable to physiologically support more than five activated ovarioles and that workers with fewer than five ovarioles are below a threshold necessary for ovary activation. As a workers ovariole number declines with age, studies on worker ovariole number need to take this plasticity into account.


Science | 2007

Queen Pheromone Blocks Aversive Learning in Young Worker Bees

Vanina Vergoz; Haley A. Schreurs; Alison R. Mercer


Journal of Insect Physiology | 2015

Regulation of oogenesis in honey bee workers via programed cell death

Isobel Ronai; Deborah A. Barton; Benjamin P. Oldroyd; Vanina Vergoz

Collaboration


Dive into the Vanina Vergoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge