Vanita Chopra
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vanita Chopra.
PLOS ONE | 2007
Jonathan H. Fox; Jibrin A. Kama; Gregory Lieberman; Raman Chopra; Kate Dorsey; Vanita Chopra; Irene Volitakis; Robert A. Cherny; Ashley I. Bush; Steven M. Hersch
Huntingtons disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu2+ in vitro in a 1∶1 copper∶protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.
Human Molecular Genetics | 2011
Michele M. Maxwell; Elizabeth M. Tomkinson; Johnathan Nobles; John W. Wizeman; Allison Amore; Luisa Quinti; Vanita Chopra; Steven M. Hersch; Aleksey G. Kazantsev
Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Vanita Chopra; Jonathan H. Fox; Greg Lieberman; Kathryn Dorsey; Wayne R. Matson; Peter Waldmeier; David E. Housman; Aleksey G. Kazantsev; Anne B. Young; Steven M. Hersch
Huntingtons disease (HD) is a progressive neurodegenerative disease caused by a glutamine expansion within huntingtin protein. The exact pathological mechanisms determining disease onset and progression remain unclear. However, aggregates of insoluble mutant huntingtin (mhtt), a hallmark of HD, are readily detected within neurons in HD brain. Although aggregated polyglutamines may not be inherently toxic, they constitute a biomarker for mutant huntingtin useful for developing therapeutics. We previously reported that the small molecule, C2-8, inhibits polyglutamine aggregation in cell culture and brain slices and rescues degeneration of photoreceptors in a Drosophila model of HD. In this study, we assessed the therapeutic potential of C2-8 in the R6/2 mouse model of HD, which has been used to provide proof-of-concept data in considering whether to advance therapies to human HD. We show that, at nontoxic doses, C2-8 penetrates the blood–brain barrier and is present in brain at a high concentration. C2-8-treated mice showed improved motor performance and reduced neuronal atrophy and had smaller huntingtin aggregates. There have been no prior drug-like, non-toxic, brain-penetrable aggregation inhibitors to arise from cell-based high-throughput screens for reducing huntingtin aggregation that is efficacious in preclinical in vivo models. C2-8 provides an essential tool to help elucidate mechanisms of neurodegeneration in HD and a therapeutic lead for further optimization and development.
Cell Reports | 2012
Vanita Chopra; Luisa Quinti; Jinho Kim; Lorraine Vollor; K. Lakshmi Narayanan; Christina K. Edgerly; Patricia M. Cipicchio; Molly A. Lauver; Soo Hyuk Choi; Richard B. Silverman; Robert J. Ferrante; Steven M. Hersch; Aleksey G. Kazantsev
Inhibition of sirtuin 2 (SIRT2) deacetylase mediates protective effects in cell and invertebrate models of Parkinsons disease and Huntingtons disease (HD). Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.
Analytical Biochemistry | 2009
Andreas Weiss; Dorothee Abramowski; Miriam Bibel; Ruth A. Bodner; Vanita Chopra; Marian DiFiglia; Jonathan Fox; Kimberly B. Kegel; Corinna Klein; Stephan Grueninger; Steven M. Hersch; David E. Housman; Etienne Régulier; H. Diana Rosas; Muriel Stefani; Scott Zeitlin; Graeme Bilbe; Paolo Paganetti
The genetic mutation causing Huntingtons disease is a polyglutamine expansion in the huntingtin protein where more than 37 glutamines cause disease by formation of toxic intracellular fragments, aggregates, and cell death. Despite a clear pathogenic role for mutant huntingtin, understanding huntingtin expression during the presymptomatic phase of the disease or during disease progression has remained obscure. Central to clarifying the role in the pathomechanism of disease is the ability to easily and accurately measure mutant huntingtin in accessible human tissue samples as well as cell and animal models. Here we describe a highly sensitive time-resolved Förster resonance energy transfer (FRET) assay for quantification of soluble mutant huntingtin in brain, plasma, and cerebrospinal fluid. Surprisingly, in mice, soluble huntingtin levels decrease during disease progression, inversely correlating with brain aggregate load. Mutant huntingtin is easily detected in human brain and blood-derived fractions, providing a utility to assess mutant huntingtin expression during disease course as well as a pharmacodynamic marker for disease-modifying therapeutics targeting expression, cleavage, or degradation of mutant huntingtin. The design of the homogeneous one-step method for huntingtin detection is such that it can be easily applied to measure other proteins of interest.
Molecular Neurodegeneration | 2010
Jonathan H. Fox; Teal Connor; Vanita Chopra; Kate Dorsey; Jibrin A. Kama; Dorothee Bleckmann; Claudia Betschart; Daniel Hoyer; Stefan Frentzel; Marian DiFiglia; Paolo Paganetti; Steven M. Hersch
BackgroundHuntingtons disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion within the huntingtin gene. Mutant huntingtin protein misfolds and accumulates within neurons where it mediates its toxic effects. Promoting mutant huntingtin clearance by activating macroautophagy is one approach for treating Huntingtons disease (HD). In this study, we evaluated the mTOR kinase inhibitor and macroautophagy promoting drug everolimus in the R6/2 mouse model of HD.ResultsEverolimus decreased phosphorylation of the mTOR target protein S6 kinase indicating brain penetration. However, everolimus did not activate brain macroautophagy as measured by LC3B Western blot analysis. Everolimus protected against early declines in motor performance; however, we found no evidence for neuroprotection as determined by brain pathology. In muscle but not brain, everolimus significantly decreased soluble mutant huntingtin levels.ConclusionsOur data suggests that beneficial behavioral effects of everolimus in R6/2 mice result primarily from effects on muscle. Even though everolimus significantly modulated its target brain S6 kinase, this did not decrease mutant huntingtin levels or provide neuroprotection.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Yi Hu; Vanita Chopra; Raman Chopra; Joseph J. Locascio; Zhixiang Liao; Hongliu Ding; Bin Zheng; Wayne R. Matson; Robert J. Ferrante; H. Diana Rosas; Steven M. Hersch; Clemens R. Scherzer
Huntington disease (HD) is a progressive neurodegenerative disease that affects 30,000 individuals in North America. Treatments that slow its relentless course are not yet available, and biomarkers that can reliably measure disease activity and therapeutic response are urgently needed to facilitate their development. Here, we interrogated 119 human blood samples for transcripts associated with HD. We found that the dynamic regulator of chromatin plasticity H2A histone family, member Y (H2AFY) is specifically overexpressed in the blood and frontal cortex of patients with HD compared with controls. This association precedes the onset of clinical symptoms, was confirmed in two mouse models, and was independently replicated in cross-sectional and longitudinal clinical studies comprising 142 participants. A histone deacetylase inhibitor that suppresses neurodegeneration in animal models reduces H2AFY levels in a randomized phase II clinical trial. This study identifies the chromatin regulator H2AFY as a potential biomarker associated with disease activity and pharmacodynamic response that may become useful for enabling disease-modifying therapeutics for HD.
PLOS Currents | 2010
Luisa Quinti; Vanita Chopra; Dante Rotili; Sergio Valente; Allison Amore; Gianluigi Franci; Sarah Meade; Marta Valenza; Lucia Altucci; Michele M. Maxwell; Steven M. Hersch; Antonello Mai; Aleksey G. Kazantsev
The family of histone deacetylases (HDACs) has recently emerged as important drug targets for treatment of slow progressive neurodegenerative disorders, including Huntington’s disease (HD). Broad pharmaceutical inhibition of HDACs has shown neuroprotective effects in various HD models. Here we examined the susceptibility of HDAC targets for drug treatment in affected brain areas during HD progression. We observed increased HDAC1 and decreased HDAC4, 5 and 6 levels, correlating with disease progression, in cortices and striata of HD R6/2 mice. However, there were no significant changes in HDAC protein levels, assessed in an age-dependent manner, in HD knock-in CAG140 mice and we did not observe significant changes in HDAC1 levels in human HD brains. We further assessed acetylation levels of α-tubulin, as a biomarker of HDAC6 activity, and found it unchanged in cortices from R6/2, knock-in, and human subjects at all disease stages. Inhibition of deacetylase activities was identical in cortical extracts from R6/2 and wild-type mice treated with a class II-selective HDAC inhibitor. Lastly, treatment with class I- and II-selective HDAC inhibitors showed similar responses in HD and wild-type rat striatal cells. In conclusion, our results show that class I and class II HDAC targets are present and accessible for chronic drug treatment during HD progression and provide impetus for therapeutic development of brain-permeable class- or isoform-selective inhibitors.
Analytical Biochemistry | 2013
Beena Thomas; Samantha Matson; Vanita Chopra; Liping Sun; Swati Sharma; Steven M. Hersch; H. Diana Rosas; Clemens R. Scherzer; Robert J. Ferrante; Wayne R. Matson
Guanine methylation is a ubiquitous process affecting DNA and various RNA species. N-7 guanine methylation (7-MG), although relatively less studied, could have a significant role in normal transcriptional regulation as well as in the onset and development of pathological conditions. The lack of a sensitive method to accurately quantify trace amounts of altered bases such as 7-MG has been a major deterrent in delineating its biological function(s). Here we report the development of methods to detect trace amounts of 7-MG in biological samples using electrochemical detection combined with high-performance liquid chromatography (HPLC) separation of compounds. We further sought to assess global alterations in DNA methylation in Huntington disease (HD), where transcriptional dysregulation is a major factor in pathogenesis. The developed method was used to study guanine methylation in cytoplasmic and nuclear nucleic acids from human and transgenic mouse HD brain and controls. Significant differences were observed in the guanine methylation levels in mouse and human samples, consistent with the known transcriptional pathology of HD. The sensitivity of the method makes it capable of detecting subtle aberrations. Identification of changes in methylation pattern will provide insights into the molecular mechanism changes that translate into onset and/or development of symptoms in diseases such as HD.
Neurobiology of Disease | 2014
Zhen Lu; Eileen Marks; Jianfang Chen; Jenna Moline; Lorraine F. Barrows; Merl F. Raisbeck; Irene Volitakis; Robert A. Cherny; Vanita Chopra; Ashley I. Bush; Steven M. Hersch; Jonathan H. Fox
Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntingtons disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntingtons disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy.