Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vardis Ntoukakis is active.

Publication


Featured researches published by Vardis Ntoukakis.


Current Biology | 2009

AvrPtoB Targets the LysM Receptor Kinase CERK1 to Promote Bacterial Virulence on Plants

Selena Gimenez-Ibanez; Dagmar R. Hann; Vardis Ntoukakis; Elena Petutschnig; Volker Lipka; John P. Rathjen

Plant innate immunity relies on a set of pattern recognition receptors (PRRs) that respond to ligands known as pathogen-associated molecular patterns (PAMPs). To overcome such immunity, phytopathogenic bacteria deliver virulence molecules called effector proteins into the plant cell that collectively promote pathogenesis. The vast majority of PRRs controlling PAMP-triggered immunity (PTI) and the mechanisms used by specific effectors to suppress these pathways are mostly unknown. Here, we show that the Arabidopsis LysM receptor kinase CERK1, which is critical for chitin elicitor signaling and resistance to fungal pathogens, plays an essential role in restricting bacterial growth on plants. This is supported by the fact that CERK1 is a target of the bacterial type III effector protein AvrPtoB, which blocks all defense responses through this receptor. AvrPtoB ubiquitinates the CERK1 kinase domain in vitro and targets CERK1 for degradation in vivo. We show that CERK1 is a determinant of bacterial immunity, but its contribution is overcome by bacteria expressing AvrPtoB. Our results reveal a new pathway for plant immunity against bacteria and a role for AvrPtoB E3-ligase activity in suppressing PTI.


Molecular Cell | 2014

Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity

Yasuhiro Kadota; Jan Sklenar; Paul Derbyshire; Lena Stransfeld; Shuta Asai; Vardis Ntoukakis; Jonathan D. G. Jones; Ken Shirasu; Frank L.H. Menke; Alexandra M. E. Jones; Cyril Zipfel

The rapid production of reactive oxygen species (ROS) burst is a conserved signaling output in immunity across kingdoms. In plants, perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) activates the NADPH oxidase RBOHD by hitherto unknown mechanisms. Here, we show that RBOHD exists in complex with the receptor kinases EFR and FLS2, which are the PRRs for bacterial EF-Tu and flagellin, respectively. The plasma-membrane-associated kinase BIK1, which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. BIK1 phosphorylates different residues than calcium-dependent protein kinases, and both PAMP-induced BIK1 activation and BIK1-mediated phosphorylation of RBOHD are calcium independent. Importantly, phosphorylation of these residues is critical for the PAMP-induced ROS burst and antibacterial immunity. Our study reveals a rapid regulatory mechanism of a plant RBOH, which occurs in parallel with and is essential for its paradigmatic calcium-based regulation.


PLOS Genetics | 2011

Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1

Benjamin Schwessinger; Milena Roux; Yasuhiro Kadota; Vardis Ntoukakis; Jan Sklenar; Alexandra M. E. Jones; Cyril Zipfel

Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control. We also show that, in contrast to the RD kinase BRI1, the non-RD kinases FLS2 and EFR have very low kinase activity, and we show that neither was able to trans-phosphorylate BAK1 in vitro. Furthermore, kinase activity for all partners is completely dispensable for the ligand-induced heteromerization of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our results demonstrate a phosphorylation-dependent differential control of plant growth, innate immunity, and cell death by the regulatory RLK BAK1, which may reveal key differences in the molecular mechanisms underlying the regulation of ligand-binding RD and non-RD RKs.


Science | 2009

Host inhibition of a bacterial virulence effector triggers immunity to infection.

Vardis Ntoukakis; Tatiana S. Mucyn; Selena Gimenez-Ibanez; Helen C. Chapman; Jose R. Gutierrez; Alexi L. Balmuth; Alexandra M. E. Jones; John P. Rathjen

Infections and Defense Bacteria secrete effectors to suppress immunity in plant and animal hosts resulting in an evolutionary arms race between bacteria and their eukaryotic hosts. One important aspect of plant immunity against bacteria is based on disease resistance protein complexes, which recognize specific bacterial effectors and activate signal transduction. A strain of the bacteria Pseudomonas that infects tomato and Arabidopsis plants injects its effector protein, AvrPtoB, into plant cells. Two plant protein kinases, Fen and Pto, then stimulate disease defense responses that may restrain or halt the infection. Ntoukakis et al. (p. 784) show that the balance between resistance and susceptibility triggered by AvrPtoB is determined by the kinase activity Pto within a disease resistance complex. An enzyme in tomato targets bacterial virulence to change the outcome of infection from susceptibility to immunity. Plant pathogenic bacteria secrete effector proteins that attack the host signaling machinery to suppress immunity. Effectors can be recognized by hosts leading to immunity. One such effector is AvrPtoB of Pseudomonas syringae, which degrades host protein kinases, such as tomato Fen, through an E3 ligase domain. Pto kinase, which is highly related to Fen, recognizes AvrPtoB in conjunction with the resistance protein Prf. Here we show that Pto is resistant to AvrPtoB-mediated degradation because it inactivates the E3 ligase domain. AvrPtoB ubiquitinated Fen within the catalytic cleft, leading to its breakdown and loss of the associated Prf protein. Pto avoids this by phosphorylating and inactivating the AvrPtoB E3 domain. Thus, inactivation of a pathogen virulence molecule is one mechanism by which plants resist disease.


Plant Journal | 2010

Prf immune complexes of tomato are oligomeric and contain multiple Pto‐like kinases that diversify effector recognition

Jose R. Gutierrez; Alexi L. Balmuth; Vardis Ntoukakis; Tatiana S. Mucyn; Selena Gimenez-Ibanez; Alexandra M. E. Jones; John P. Rathjen

Cytoplasmic recognition of pathogen virulence effectors by plant NB-LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB-LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N-terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N-terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non-Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.


Science | 2014

A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

Alberto P. Macho; Benjamin Schwessinger; Vardis Ntoukakis; Alexandre Brutus; Cécile Segonzac; Sonali Roy; Yasuhiro Kadota; Man Ho Oh; Jan Sklenar; Paul Derbyshire; Rosa Lozano-Durán; Frederikke Gro Malinovsky; Jacqueline Monaghan; Frank L.H. Menke; Steven C. Huber; Sheng Yang He; Cyril Zipfel

Move and Countermove Receptors on plant cell surfaces are tuned to recognize molecular patterns associated with pathogenic bacteria. Macho et al. (p. 1509; published online 13 March) found that activation of one of these receptors in Arabidopsis results in phosphorylation of a specific tyrosine residue, which in turn triggers the plants immune response to the phytopathogen Pseudomonas syringae. P. syringae counters by secreting a specifically targeted phosphatase, thus stalling the plants immune response. A plant pathogen and its host compete for control over a key phosphorylation site in an innate immune receptor. Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell’s surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.


Plant Signaling & Behavior | 2009

The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis

Selena Gimenez-Ibanez; Vardis Ntoukakis; John P. Rathjen

Plants use pattern recognition receptors (PRRs) to perceive pathogen-associated molecular pattern (PAMPs) and initiate defence responses. PAMP-triggered immunity (PTI) plays an important role in general resistance, and constrains the growth of most microbes on plants. Despite the importance of PRRs in plant immunity, the vast majority of them remain to be identified. We recently showed that the Arabidopsis LysM receptor kinase CERK1 is required not only for chitin signalling and fungal resistance, but plays an essential role in restricting bacterial growth on plants. We proposed that CERK1 may mediate the perception of a bacterial PAMP, or an endogenous plant cell wall component released during infection, through its extracellular carbohydrate-binding LysM-motifs. Here we report reduced activation of a PAMP-induced defence response on plants lacking the CERK1 gene after treatment with crude bacterial extracts. This demonstrates that CERK1 mediates perception of an unknown bacterial PAMP in Arabidopsis.


New Phytologist | 2015

Standards for plant synthetic biology: a common syntax for exchange of DNA parts

Nicola J. Patron; Diego Orzaez; Sylvestre Marillonnet; Heribert Warzecha; Colette Matthewman; Mark Youles; Oleg Raitskin; Aymeric Leveau; Gemma Farré; Christian Rogers; Alison G. Smith; Julian M. Hibberd; Alex A. R. Webb; James C. Locke; Sebastian Schornack; Jim Ajioka; David C. Baulcombe; Cyril Zipfel; Sophien Kamoun; Jonathan D. G. Jones; Hannah Kuhn; Silke Robatzek; H. Peter van Esse; Dale Sanders; Giles E.D. Oldroyd; Cathie Martin; Rob Field; Sarah E. O'Connor; Samantha Fox; Brande B. H. Wulff

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.


The EMBO Journal | 2014

Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

Cécile Segonzac; Alberto P. Macho; Maite Sanmartín; Vardis Ntoukakis; José J. Sánchez-Serrano; Cyril Zipfel

Recognition of pathogen‐associated molecular patterns (PAMPs) by surface‐localized pattern‐recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP‐triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co‐receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti‐bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A‐based regulation leads to increased steady‐state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface‐localized immune receptor complexes.


The Plant Cell | 2011

Cautionary Notes on the Use of C-Terminal BAK1 Fusion Proteins for Functional Studies

Vardis Ntoukakis; Benjamin Schwessinger; Cécile Segonzac; Cyril Zipfel

Detailed phenotypic characterization reveals that several BAK1 fusion proteins with C-terminal tags strongly impair complementation of bak1 null mutants with respect to responsiveness to the bacterial pathogen-associated molecular patterns flagellin and EF-Tu. This raises concerns about the widespread use of such protein variants of this important regulatory Leu-rich repeat receptor-like kinase (RLK) for functional analyses of RLK-based signaling.

Collaboration


Dive into the Vardis Ntoukakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Selena Gimenez-Ibanez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

John P. Rathjen

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Schwessinger

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge