Varinderpal S. Dhillon
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Varinderpal S. Dhillon.
Molecular Cancer | 2004
Varinderpal S. Dhillon; Mohd Shahid; Syed Akhtar Husain
BackgroundGranulosa cell tumors (GCTs) are relatively rare and are subtypes of the sex-cord stromal neoplasms. Methylation induced silencing in the promoters of genes such as tumor suppressor genes, DNA repair genes and pro-apoptotic genes is recognised as a critical factor in cancer development.MethodsWe examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 5 gene promoters in 25 GCTs cases by methylation specific PCR and RT-PCR. In addition, the compatible tissues (normal tissues distant from lesion) from three non-astrocytoma patients were also included as the control.ResultsFrequencies of methylation in GCTs were 7/25 (28 % for FHIT), 6/25 (24% for FNACF), 3/25 (12% for Cyclin D2), 1/25 (4% for BRCA2) and 14/25 (56%) in RUNX3 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed that overall promoter methylation was higher in more advanced stage of the disease. Promoter methylation was associated with gene silencing in GCT cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression.ConclusionsThese results may have implications in better understanding the underlying epigenetic mechanisms in GCT development, provide prognostic indicators, and identify important gene targets for treatment.
Mutagenesis | 2011
Varinderpal S. Dhillon; Philip Thomas; G. Iarmarcovai; Micheline Kirsch-Volders; Stefano Bonassi; Michael Fenech
The cytokinesis-block micronucleus cytome (CBMNCyt) assay is a widely used technique for measuring DNA damage in human populations. The formation of micronuclei (MN) in dividing cells can result from chromosome breakage due to unrepaired or mis-repaired DNA lesions or chromosome malsegregation due to mitotic malfunction. The sensitivity of the MN assay to polymorphisms in various genes involved in DNA repair, activation/deactivation of carcinogens/chemicals/drugs/alcohol, folate metabolism pathway and micronutrient transport has been extensively reported in the literature. MN frequency is also an important index for determining DNA repair efficiency phenotype (including mis-repair), response to environmental exposure and identifying various dietary factors required for optimal genome stability. The aim of the present study is to review the reported in vivo associations between genotype and MN frequency in humans taking into considerations the presence of interactions with nutrients levels and/or exposure to genotoxins. One hundred and eleven publications linking MN frequency in peripheral blood lymphocytes to gene polymorphism were retrieved from PubMed. After applying exclusion criteria, only 37 studies were evaluated in the present review. Polymorphisms in XRCC1 (Arg280His), ERCC2 (Lys751Gln), CYP2E1 (c1/c2) and MTR (A2756G) were consistently associated with the MN formation. These results contribute substantial evidence to the hypothesis that genotype may influence MN frequency in human cells.
Clinical Cancer Research | 2004
Varinderpal S. Dhillon; Mohammad Aslam; Syed Akhtar Husain
Purpose: Granulosa cell tumors (GCTs) are relatively rare and are subtypes of the sex-cord stromal neoplasms. A better understanding of the molecular genetics underlying various steps in malignant transformation is critical to success in the battle against this disease. Changes in the status of methylation, known as epigenetic alterations, are one of the most common molecular alterations in human cancers, including GCTs. Chromosomal instability and microsatellite instability (MSI) are common in these GCTs. We tested the hypothesis that C→T transition polymorphism in the promoter region of cytosine DNA-methyltransferase-3B (DNMT3B) and its altered expression are also associated with hypermethylation of the genes. We also attempted to determine the relationship between MSI of ovarian carcinoma and hMLH1 hypermethylation in these tumors. Experimental Design: We studied chromosome instability in 25 GCTs by detecting gross chromosome rearrangements in cultured peripheral blood lymphocytes. MSI was assessed using six microsatellite markers (BAT25, BAT26, D2S123, D5S346, D11S1318, and D17S250). Using sensitive methylation-specific PCR, we searched for aberrant promoter hypermethylation in a panel of genes including p16, BRCA1, RASSF1A, ER-α, TMS1, TIMP3, Twist, GSTP1, AR, and hMLH1. Polymorphism in the DNMT3B gene was assessed by the PCR-RFLP method, and DNMT3B expression was studied by reverse transcription-PCR assay. Results: Chromosome instability was indicated by significantly higher frequencies of chromosome aberrations (6.24%; P < 0.001) compared with controls (2.12%). The most frequently observed changes include trisomy 14 and monosomy 22. MSI has been found in 19 of 25 tumors, and loss of heterozygosity has been found in 9 of 25 tumors. Frequencies of methylation in GCTs were 40% for p16 and ER-α; 36% for BRCA1 and RASSF1A; 28% for hMLH1; 24% for TIMP3, Twist, and GSTP1; and 20% in TMS1 and AR. TT genotype was found only in two cases; the remainder were either CC or CT type. There was no significant alteration in the expression of DNMT3B in these patients. Conclusions: Coexistence of chromosome instability, MSI, and hypermethylation suggests that both genetic and epigenetic mechanisms may act in concert to inactivate the above-mentioned genes in these GCTs. These mechanisms can be an early event in the pathogenesis of these tumors, and it can be a critical step in the tumorigenic process. All these events might play an important role in early clinical diagnosis and in chemotherapeutic management and treatment of the disease. Larger studies may lend further understanding to the etiology and clinical behavior of these tumors.
Mutation Research-reviews in Mutation Research | 2014
Varinderpal S. Dhillon; Michael Fenech
Mitochondria are essential for mammalian and human cell function as they generate ATP via aerobic respiration. The proteins required in the electron transport chain are mainly encoded by the circular mitochondrial genome but other essential mitochondrial proteins such as DNA repair genes, are coded in the nuclear genome and require transport into the mitochondria. In this review we summarize current knowledge on the association of point mutations and deletions in the mitochondrial genome that are detrimental to mitochondrial function and are associated with accelerated ageing and neurological disorders including Alzheimers, Parkinsons, Huntingtons and Amyotrophic lateral sclerosis (ALS). Mutations in the nuclear encoded genes that disrupt mitochondrial functions are also discussed. It is evident that a greater understanding of the causes of mutations that adversely affect mitochondrial metabolism is required to develop preventive measures against accelerated ageing and neurological disorders caused by mitochondrial dysfunction.
European Journal of Human Genetics | 2011
Mohammad Shahid; Varinderpal S. Dhillon; Hesham Khalil; Anubha Sexana; Syed Akhtar Husain
Microdeletions in azoospermia factor (AZF) region on distal Yq are associated with male infertility and spermatogenic failure due to intra-chromosomal homologous recombination between large nearly identical repeat amplicons and are found in ∼10% of azoospermic and severe oligozoospermic cases. Although AZFc is deleted in azoospermia or oligozoospermia, no definitive conclusion has been drawn for the role of partial AZFc deletions to spermatogenic failure. Therefore, this study is planned to investigate the role of gr/gr subdeletions in individuals with spermatogenic failure and to find its relationship with Y chromosome haplogroups (HGs) in infertile men from Indian population. It is a case-control study involving 236 azoospermic, 182 oligospermic and 240 healthy normozoospermic men. We found 18 gr/gr, 11 b1/b3 and 2 b2/b3 subdeletions in azoospermic patients and 12 gr/gr, 5 b1/b3 and 4 b2/b3 subdeletions in oligospermic patients. However, we also found seven gr/gr deletions in normozoospermic men. Seven patients each with spermatogenic arrest and oligospermia who carry gr/gr subdeletions have deleted DAZ3/DAZ4 genes. A total of 11 patients with sertoli cell-only syndrome (SCOS) and 5 oligospermic patients with gr/gr subdeletions also have DAZ1/DAZ2 genes deleted indicating that deletions of DAZ genes contributed differently to damage to spermatogenic process. L1 HG is found in patients showing b1/b3 subdeletions, whereas HG H1a2 and H1b were found in normozoospermic individuals with gr/gr subdeletions. Our results provide evidence of association between the occurrence of subdeletions and male infertility as well as the severity of the spermatogenic failure.
Experimental and Therapeutic Medicine | 2012
Anubha Saxena; Varinderpal S. Dhillon; Mohammad Shahid; Hesham Khalil; Madhu Rani; Trinath Prasad Das; Suresh Hedau; Arif Hussain; Raza Ali Naqvi; S. V. S. Deo; Nootan Kumar Shukla; Bhudev C. Das; Syed Akhtar Husain
Glutathione S-transferases (GSTs) are an important group of isoenzymes that play an essential role in the detoxification of carcinogens. Polymorphism at exon 5 of the GST π family decreases the catalytic activity and affects the detoxification ability of the enzyme, GSTP1. GSTP1 promoter hypermethylation and loss of expression are frequently observed in various types of carcinoma. We hypothesized that somatic epigenetic modification in homozygous mutants increases the degree to which breast cancer risk is affected by lifestyle factors and dietary habits. The present study used tumor biopsies and blood samples from 215 breast cancer patients and 215 blood samples from healthy donors. GSTP1 polymorphism was studied using PCR-restriction fragment length polymorphism, methylation using methylation-specific PCR and loss of expression using immunohistochemistry and western blotting. No significant increase was observed in the breast cancer risk of individuals with the mutant (Val) allele [odds ratio (OR), 1.48; 95% confidence interval (CI), 0.97–2.26 for heterozygotes; OR, 1.42; 95% CI, 0.86–2.42 homozygous mutants]. GSTP1 promoter hypermethylation was detected in one-third of tumor biopsies (74/215) and was found to be associated with a loss of expression. Genotype and tumor methylation associations were not observed. Estrogen (ER) and progesterone (PR) receptor-positive tumors had a higher methylation frequency. GSTP1 polymorphism was not associated with increased promoter hypermethylation. The results suggest that GSTP1 methylation is a major event in breast carcinogenesis and may act as a tumor-specific biomarker.
Cancer Epidemiology, Biomarkers & Prevention | 2008
Sasja Beetstra; Graeme Suthers; Varinderpal S. Dhillon; Carolyn Salisbury; Julie Turner; Meryl Altree; Ross A. McKinnon; Michael Fenech
Methionine-dependence phenotype (MDP) refers to the reduced ability of cells to proliferate when methionine is restricted and/or replaced by its immediate precursor homocysteine. MDP is a characteristic of human tumors in vivo, human tumor cell lines, and normal somatic tissue in some individuals. It was hypothesized that MDP is a risk factor for developing breast cancer in BRCA (BRCA1 and BRCA2) germline mutation carriers. To test the hypothesis, human peripheral blood lymphocytes of BRCA carriers with and without breast cancer and healthy non-carrier relatives (controls) were cultured for 9 days in medium containing either 0.1 mmol/L l-methionine or 0.2 mmol/L d,l-homocysteine, with the ratio of viable cell growth in both types of medium after 9 days used to calculate the methionine-dependence index (MDI), a measure of MDP. We also tested whether MDP was associated with common polymorphisms in methionine metabolism. Viable cell growth, MDI, and polymorphism frequency in MTRR (A66G and C524T) and MTHFR (A1298C and A1793G) did not differ among the study groups; however, MDI tended to be higher in BRCA carriers with breast cancer than those without and was significantly increased in MTHFR 677T allele carriers relative to wild-type carriers (P = 0.017). The presence of MTR A2756G mutant allele and MTHFR C677T mutant allele in carriers was associated with increased breast cancer risk [odds ration, 3.2 (P = 0.16; 95% confidence interval, 0.76-13.9) and 3.9 (P = 0.09; 95% confidence interval, 0.93-16.3), respectively]. The results of this study support the hypothesis that defects in methionine metabolism may be associated with breast cancer risk in BRCA carriers. (Cancer Epidemiol Biomarkers Prev 2008;17(10):2565–71)
International Journal of Radiation Biology | 2004
Varinderpal S. Dhillon; Philip Thomas; Michael Fenech
Purpose: To develop a reproducible single‐cell gel electrophoresis assay for DNA damage and repair in buccal mucosa and sublingual exfoliated cells. Materials and methods: Buccal mucosa and sublingual cells and lymphocytes from six individuals (three males, three females, aged 34–45 years) were challenged with increasing doses of gamma‐rays. DNA strand breaks and DNA repair were measured using the single‐cell gel electrophoresis assay. Results: Baseline DNA strand breaks were significantly greater in buccal mucosa and sublingual cells compared with lymphocytes. Buccal mucosa and sublingual cells did not differ from each other with respect to induction of DNA strand breaks by 2 or 4 Gy gamma‐rays. However, they showed a smaller increase in gamma‐ray‐induced DNA strand breaks compared with lymphocytes (32–53% less than lymphocytes; ANOVA p<0.0001). Unlike lymphocytes, which repaired 83% of DNA strand breaks, buccal mucosa and sublingual cells exhibited only a minimal capacity for DNA repair (approximately 0–14% of the level in lymphocytes). Conclusions: Buccal mucosa and sublingual cells exhibit an apparent resistance to the expression of radiation‐induced DNA strand breaks in vitro and an apparent lack of DNA strand break repair in the single‐cell gel electrophoresis assay.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016
Chibuisi G. Alimba; Varinderpal S. Dhillon; Adekunle A. Bakare; Michael Fenech
Heavy metal exposure or dietary deficiency is associated with increased genetic damage, cancer and age-related diseases. Folate (vitamin B9) required for DNA repair and synthesis may increase cellular susceptibility to metal induced genotoxicity. This study investigated the interactive effects of folic acid deficiency and sufficiency on genome instability and cytotoxicity induced by chromium (VI), copper (II), manganese (II), lead (IV), and their mixture (CCMP) in WIL2-NS human B lymphoblastoid cells. WIL2-NS cells were cultured in folic acid deficient (20 nM) and replete (2000 nM) RPMI 1640 medium treated with different concentrations (0.00-1000 μM) of the metals and CCMP for 48 h. Chromosomal damage and cytotoxicity were measured using the Cytokinesis-block Micronucleus Cytome assay. CCMP, Cr, Pb, Cu and Mn induced concentration dependent, increases in cells with chromosome damage (micronuclei, nucleoplasmic bridges, nuclear buds) and necrotic cells and decreased nuclear division index. The metals exhibited different cytotoxic and genotoxic potentials (CCMP>Cr>Pb>Cu>Mn) in both folate deficient and sufficient cells, with the cytogenotoxic effects being greater in folate deficient cells. Significant interaction between the metals and folic acid suggests that folic acid deficiency exacerbated cell proliferation inhibition and genome instability induced by metals. Folate deficiency, increasing metal concentration, and their interactions explained 3-11%, 74-92% and 4-12% of the variance of DNA damage biomarkers. In conclusion, exposure to the tested metals (0.01-1000 μM) increased chromosomal DNA damage in WIL2-NS cells and this was exacerbated by folate deficiency.
BMC Medical Genetics | 2010
Mohammad Shahid; Varinderpal S. Dhillon; Hesham Khalil; Shameemul Haque; Swaraj Batra; Syed Akhtar Husain; L. H. J. Looijenga
BackgroundSex determining factor (SRY) located on the short arm of the Y chromosome, plays an important role in initiating male sex determination, resulting in development of testicular tissue. Presence of the SRY gene in females results in XY sex reversal and increased risk of gonadal germ cell tumours if the karyotype also includes the so-called GonadoBlastoma on the Y chromosome (GBY) region. The majority of mutations within the SRY gene are de novo affecting only a single individual in the family. The mutations within the high-mobility group (HMG) region have the potential to affect its DNA binding activity.Case PresentationWe performed G- and R-banding cytogenetic analysis of the patient and her family members including her father. We also performed molecular genetic analysis of SRY gene. Cytogenetic analysis in the patient (Turner Syndrome) revealed the mosaic karyotype as 45, X/46, XY (79%/21% respectively) while her father (milder features with testicular dysgenesis syndrome) has a normal male karyotype (46, XY). Using molecular approach, we screened the patient and her father for mutations in the SRY gene. Both patient and her father showed the same deletion of cytosine within HMG box resulting in frame shift mutation (L94fsX180), the father in a mosaic pattern. Histological examination of the gonads from the patient revealed the presence of gonadoblastoma formation, while the father presented with oligoasthenozoospermia and a testicular seminoma. The frameshift mutation at this codon is novel, and may result in a mutated SRY protein.ConclusionOur results suggest that lack of a second sex chromosome in majority cells of the patient may have triggered the short stature and primary infertility, and the mutated SRY protein may be associated with the development of gonadoblastoma. It is of importance to note that mosaic patients without a SRY mutation also have a risk for malignant germ cell tumors.
Collaboration
Dive into the Varinderpal S. Dhillon's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs