Varkha Agrawal
NorthShore University HealthSystem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Varkha Agrawal.
Seminars in Fetal & Neonatal Medicine | 2012
Varkha Agrawal; Emmet Hirsch
Preterm labor is defined as labor that begins before 37 completed weeks of pregnancy. More than 12% of infants born in the USA are preterm. At least 40% of preterm births are associated with intrauterine infection. Toll-like receptors (TLRs) are members of a family of cell-surface proteins responsible for recognition of a diverse spectrum of bacterial, viral and fungal pathogens. TLRs initiate the host innate (i.e. non-adaptive) immune response, inducing a proinflammatory cascade involving cytokines, chemokines, prostaglandins, and other effector molecules that result in the characteristic phenomena of labor, such as uterine contractions and rupture of fetal membranes. These cascades may also be activated by mechanisms that are not primarily infectious but are accompanied by inflammatory responses. Now that the molecular mechanisms linking infection and labor have been, to a large extent, elucidated, the challenge is to identify points of overlap with non-infectious causes of labor and to find intervention strategies that can minimize the negative impact of preterm delivery.
Journal of Immunology | 2013
Mukesh K. Jaiswal; Varkha Agrawal; Timothy M. Mallers; Alice Gilman-Sachs; Emmet Hirsch; Kenneth D. Beaman
An innate immune response is required for successful implantation and placentation. This is regulated, in part, by the a2 isoform of V-ATPase (a2V) and the concurrent infiltration of M1 (inflammatory) and M2 (anti-inflammatory) macrophages to the uterus and placenta. The objective of the present study was to identify the role of a2V during inflammation-induced preterm labor in mice and its relationship to the regulation of apoptosis and innate immune responses. Using a mouse model of infection-induced preterm delivery, gestational tissues were collected 8 h after intrauterine inoculation on day 14.5 of pregnancy with either saline or peptidoglycan (PGN; a TLR 2 agonist) and polyinosinic-polycytidylic acid [poly(I:C); a TLR3 agonist], modeling Gram-positive bacterial and viral infections, respectively. Expression of a2V decreased significantly in the placenta, uterus, and fetal membranes during PGN+poly(I:C)-induced preterm labor. Expression of inducible NO synthase was significantly upregulated in PGN+poly(I:C)-treated placenta and uterus. PGN+poly(I:C) treatment disturbed adherens junction proteins and increased apoptotic cell death via an extrinsic pathway of apoptosis among uterine decidual cells and spongiotrophoblasts. F4/80+ macrophages were increased and polarization was skewed in PGN+poly(I:C)-treated uterus toward double-positive CD11c+ (M1) and CD206+ (M2) cells, which are critical for the clearance of dying cells and rapid resolution of inflammation. Expression of Nlrp3 and activation of caspase-1 were increased in PGN+poly(I:C)-treated uterus, which could induce pyroptosis. These results suggest that the double hit of PGN+poly(I:C) induces preterm labor via reduction of a2V expression and simultaneous activation of apoptosis and inflammatory processes.
PLOS ONE | 2013
Varkha Agrawal; Keith Smart; Tamas Jilling; Emmet Hirsch
Toll like receptors (TLRs) are pattern-recognition molecules that initiate the innate immune response to pathogens. Pulmonary surfactant protein (SP)-A is an endogenously produced ligand for TLR2 and TLR4. SP-A has been proposed as a fetally produced signal for the onset of parturition in the mouse. We examined the effect of interactions between SP-A and the pathogenic TLR agonists lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C)) (ligands for TLR4, TLR2 and TLR3, respectively) on the expression of inflammatory mediators and preterm delivery. Three types of mouse macrophages (the cell line RAW 264.7, and fresh amniotic fluid and peritoneal macrophages, including macrophages from TLR4 and TLR2 knockout mice) were treated for up to 7 hours with pathogenic TLR agonists with or without SP-A. SP-A alone had no effect upon inflammatory mediators in mouse macrophages and did not independently induce preterm labor. SP-A significantly suppressed TLR ligand-induced expression of inflammatory mediators (interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the chemokine CCL5) via a TLR2 dependent mechanism. In a mouse inflammation-induced preterm delivery model, intrauterine administration of SP-A significantly inhibited preterm delivery, suppressed the expression of proinflammatory mediators and enhanced the expression of the CXCL1 and anti-inflammatory mediator IL-10. We conclude that SP-A acts via TLR2 to suppress TLR ligand-induced preterm delivery and inflammatory responses.
Scientific Reports | 2015
Varkha Agrawal; Mukesh K. Jaiswal; Timothy M. Mallers; Gajendra K. Katara; Alice Gilman-Sachs; Kenneth D. Beaman; Emmet Hirsch
Cellular organelles and proteins are degraded and recycled through autophagy, a process during which vesicles known as autophagosomes fuse with lysosomes. Altered autophagy occurs in various diseases, but its role in preterm labor (PTL) is unknown. We investigated the role of autophagic flux in two mouse models of PTL compared to controls: 1) inflammation-induced PTL (IPTL), induced by toll-like receptor agonists; and 2) non-inflammation (hormonally)-induced PTL (NIPTL). We demonstrate that the autophagy related genes Atg4c and Atg7 (involved in the lipidation of microtubule-associated protein 1 light chain 3 (LC3) B-I to the autophagosome-associated form, LC3B-II) decrease significantly in uterus and placenta during IPTL but not NIPTL. Autophagic flux is altered in IPTL, as shown by the accumulation of LC3B paralogues and diminishment of lysosome associated membrane protein (LAMP)-1, LAMP-2 and the a2 isoform of V-ATPase (a2V, an enzyme involved in lysosome acidification). These alterations in autophagy are associated with increased activation of NF-κB and proinflammatory cytokines/chemokines in both uterus and placenta. Similar changes are seen in macrophages exposed to TLR ligands and are enhanced with blockade of a2V. These novel findings represent the first evidence of an association between altered autophagic flux and hyper-inflammation and labor in IPTL.
Fertility and Sterility | 2011
Varkha Agrawal; Mukesh K. Jaiswal; Yogesh K. Jaiswal
Our objective was to investigate the effect of gram-negative bacterial infection on the ovaries and serum level of P(4) and 17β-E(2) during the preimplantation days of pregnancy in the mouse. We found that lipopolysaccharide alters the serum level of P(4) and E(2) during the preimplantation days of pregnancy and elevates the E(2)/P(4) ratio, which may keep the uterus nonreceptive during the preimplantation days of pregnancy and also not prepare the developing blastocysts for implantation in the mouse. A large infiltration of macrophages in the corpora lutea and appearance of graafian follicles from day 3.5 of pregnancy because of lipopolysaccharide treatment, which reflect a gram-negative bacterial infection, may be responsible for ovarian dysfunction and altered P(4) and E(2) level in serum.
Biology of Reproduction | 2014
Varkha Agrawal; Mukesh K. Jaiswal; Vladimir Ilievski; Kenneth D. Beaman; Tamas Jilling; Emmet Hirsch
ABSTRACT Platelet-activating factor (PAF), a potent phospholipid activator of inflammation that signals through its cognate receptor (platelet-activating factor receptor, PTAFR), has been shown to induce preterm delivery in mice. Toll-like receptors (TLRs) are transmembrane receptors that mediate innate immunity. We have shown previously that Escherichia coli-induced preterm delivery in mice requires TLR signaling via the adaptor protein myeloid differentiation primary response gene 88 (MyD88), but not an alternative adaptor, Toll/IL-1 receptor domain-containing adapter protein-inducing interferon-beta (TRIF). In the present work, we analyzed the role of endogenously produced PAF in labor using mice lacking (knockout [KO]) PAF acetylhydrolase (PAF-AH; the key degrading enzyme for PAF). PAF-AH KO mice are more susceptible to E. coli-induced preterm delivery and inflammation than controls. In peritoneal macrophages, the PTAFR agonist carbamyl PAF induces production of inflammatory markers previously demonstrated to be upregulated during bacterially induced labor, including: inducible nitric oxide synthase (Nos2), the chemokine Ccl5 (RANTES), tumor necrosis factor (Tnf), and level of their end-products (NO, CCL5, TNF) in a process dependent upon both IkappaB kinase and calcium/calmodulin-dependent protein kinase II. Interestingly, this induced expression was completely eliminated not only in macrophages deficient in PTAFR, but also in those lacking either TLR4, MyD88, or TRIF. The dependence of PAF effects upon TLR pathways appears to be related to production of PTAFR itself: PAF-induced expression of Ptafr mRNA was eliminated completely in TLR4 KO and partially in MyD88 and TRIF KO macrophages. We conclude that PAF signaling plays an important role in bacterially induced preterm delivery. Furthermore, in addition to its cognate receptor, PAF signaling in peritoneal macrophages requires TLR4, MyD88, and TRIF.
Scientific Reports | 2015
Mukesh K. Jaiswal; Varkha Agrawal; Sahithi Pamarthy; Gajendra K. Katara; Arpita Kulshrestha; Alice Gilman-Sachs; Kenneth D. Beaman; Emmet Hirsch
Notch signaling plays an important role in regulation of innate immune responses and trophoblast function during pregnancy. To identify the role of Notch signaling in preterm labor, Notch receptors (Notch1-4), its ligands (DLL (Delta-like protein)-1/3/4), Jagged 1/2) and Notch-induced transcription factor Hes1 were assessed during preterm labor. Preterm labor was initiated on gestation day 14.5 by intrauterine (IU) injection of peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C). Notch1, Notch2, Notch4, DLL-1 and nuclear localization of Hes1 were significantly elevated in uterus and placenta during PGN+poly(I:C)-induced preterm labor. Ex vivo, Gamma secretase inhibitor (GSI) (inhibitor of Notch receptor processing) significantly diminished the PGN+poly(I:C)-induced secretion of M1- and M2-associated cytokines in decidual macrophages, and of proinflammatory cytokines (IFN-γ, TNF-α and IL-6) and chemokines (MIP-1β) in decidual and placental cells. Conversely, angiogenesis factors including Notch ligands Jagged 1/2 and DLL-4 and VEGF were significantly reduced in uterus and placenta during PGN+poly(I:C)-induced preterm labor. In vivo GSI treatment prevents PGN+poly(I:C)-induced preterm delivery by 55.5% and increased the number of live fetuses in-utero significantly compared to respective controls 48 hrs after injections. In summary, Notch signaling is activated during PGN+poly(I:C)-induced preterm labor, resulting in upregulation of pro-inflammatory responses, and its inhibition improves in-utero survival of live fetuses.
Zygote | 2013
Varkha Agrawal; Mukesh K. Jaiswal; Yogesh K. Jaiswal
The objective of the present study was to investigate the effect of Gram-negative bacteria infection on ovarian steroid receptors, i.e. progesterone receptor (PR) and estradiol receptor (ER) during preimplantation days of pregnancy. A well established mouse model of Gram-negative bacteria infection was used to test this objective. Mice were treated with normal saline or lipopolysaccharide (LPS) on day 0.5 of pregnancy and used to collect embryos and uterine horns on day 1.5 to day 4.42 preimplantation day of pregnancy. Total RNA was extracted and reverse-transcription polymerase chain reaction (PCR) was performed to check the expression of PR and ER genes. The mRNA expression of PR and ER was altered in embryos and uterus of LPS-treated animals during preimplantation days of pregnancy studied. These results suggest that PR and ER play an important role in Gram-negative bacteria infection and induced implantation failure in mouse.
Journal of Leukocyte Biology | 2016
Varkha Agrawal; Mukesh K. Jaiswal; Sahithi Pamarthy; Gajendra K. Katara; Arpita Kulshrestha; Alice Gilman-Sachs; Emmet Hirsch; Kenneth D. Beaman
Notch signaling pathways exert effects throughout pregnancy and are activated in response to TLR ligands. To investigate the role of Notch signaling in preterm labor, Notch receptors (Notch1–4), its ligand Delta‐like protein‐1, transcriptional repressor hairy and enhancer of split‐1, and Notch deregulator Numb were assessed. Preterm labor was initiated on gestation d 14.5 by 1 of 2 methods: 1) inflammation‐induced preterm labor: intrauterine injection of LPS (a TLR4 agonist) and 2) hormonally induced preterm labor: subcutaneous injection of mifepristone. Delta‐like protein‐1, Notch1, and hairy and enhancer of split‐1 were elevated significantly, and Numb was decreased in the uterus and placenta of inflammation‐induced preterm labor mice but remained unchanged in hormonally induced preterm labor compared with their respective controls. F4/80+ macrophage polarization was skewed in the uterus of inflammation‐induced preterm labor toward M1‐positive (CD11c+) and double‐positive [CD11c+ (M1) and CD206+ (M2)] cells. This process is dependent on activation of Notch signaling, as shown by suppression of M1 and M2 macrophage‐associated cytokines in decidual macrophages in response to γ‐secretase inhibitor (an inhibitor of Notch receptor processing) treatment ex vivo. γ‐Secretase inhibitor treatment also diminished the LPS‐induced secretion of proinflammatory cytokines and chemokines in decidual and placental cells cultured ex vivo. Furthermore, treatment with recombinant Delta‐like protein‐1 ligand enhanced the LPS‐induced proinflammatory response. Notch ligands (Jagged 1 and 2 and Delta‐like protein‐4) and vascular endothelial growth factor and its receptor involved in angiogenesis were reduced significantly in the uterus and placenta during inflammation‐induced preterm labor. These results suggest that up‐regulation of Notch‐related inflammation and down‐regulation of angiogenesis factors may be associated with inflammation‐induced preterm labor but not with hormonally induced preterm labor.
American Journal of Obstetrics and Gynecology | 2015
Yana Filipovich; Varkha Agrawal; Susan E. Crawford; Philip Fitchev; Xiao-Wu Qu; Jeremy Klein; Emmet Hirsch
OBJECTIVE The objective of the study was to investigate the role of polymorphonuclear leukocytes (PMNs) in a mouse model of Escherichia coli-induced labor. STUDY DESIGN Intraperitoneal injection of rabbit antimouse PMN antiserum or control was performed in CD-1 mice 29 hours and 5 hours prior to laparotomy and intrauterine injection of either killed E coli or phosphate-buffered saline on day 14.5 of pregnancy. Preterm delivery was defined as delivery of at least 1 pup within 48 hours. Circulating leukocyte counts were determined manually or by flow cytometry at the time of surgery and 8, 24, and 48 hours afterward. Maternal and fetal tissues were analyzed in a separate group of animals 8 hours after surgery. RESULTS Pretreatment with anti-PMN antiserum significantly decreased the numbers of circulating leukocytes and the proportion of neutrophils among all leukocytes by 70-80% at surgery and at least 8 hours thereafter. Neutrophil depletion significantly reduced 2 markers of neutrophil activation in the uterus and placenta (neutrophil elastase and myeloperoxidase activity) and neutrophil infiltration into gestational tissues in bacterially treated animals to baseline (control) levels but did not affect preterm birth rates. The large E coli-induced increases in uterine inflammatory markers (interleukin-1β, tumor necrosis factor, chemokine ligand-5, cyclooxygenase-2) were not affected or were only minimally affected by neutrophil depletion. CONCLUSION Although PMN antiserum reduces both neutrophil number and activity, it does not diminish sensitivity to bacterially induced delivery or meaningfully alter the expression of inflammatory markers in the mouse model. Preterm birth and inflammation in this model are not likely to depend on neutrophil function.