Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Varun Dwivedi is active.

Publication


Featured researches published by Varun Dwivedi.


Journal of Virology | 2010

Swine Influenza H1N1 Virus Induces Acute Inflammatory Immune Responses in Pig Lungs: a Potential Animal Model for Human H1N1 Influenza Virus

Mahesh Khatri; Varun Dwivedi; Steven Krakowka; Cordelia Manickam; Ahmed Ali; Leyi Wang; Zhuoming Qin; Gourapura J. Renukaradhya; Chang-Won Lee

ABSTRACT Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.


Virology Journal | 2012

Evaluation of immune responses to porcine reproductive and respiratory syndrome virus in pigs during early stage of infection under farm conditions

Varun Dwivedi; Cordelia Manickam; Basavaraj Binjawadagi; Daniel Linhares; Michael P. Murtaugh; Gourapura J. Renukaradhya

BackgroundPorcine reproductive and respiratory syndrome virus (PRRSV) causes chronic, economically devastating disease in pigs of all ages. Frequent mutations in the viral genome result in viruses with immune escape mutants. Irrespective of regular vaccination, control of PRRSV remains a challenge to swine farmers. In PRRSV-infected pigs, innate cytokine IFN-α is inhibited and the adaptive arm of the immunity is delayed. To elucidate both cellular and innate cytokine responses at very early stages of PRRSV infection, seven weeks old pigs maintained on a commercial pig farm were infected and analyzed.ResultsOne pig in a pen containing 25 pigs was PRRSV infected and responses from this pig and one penmate were assessed two days later. All the infected and a few of the contact neighbor pigs were viremic. At day 2 post-infection, approximately 50% of viremic pigs had greater than 50% reduction in NK cell-mediated cytotoxicity, and nearly a 1-fold increase in IFN-α production was detected in blood of a few pigs. Enhanced secretion of IL-4 (in ~90%), IL-12 (in ~40%), and IL-10 (in ~20%) (but not IFN-γ) in PRRSV infected pigs was observed. In addition, reduced frequency of myeloid cells, CD4-CD8+ T cells, and CD4+CD8+ T cells and upregulated frequency of lymphocytes bearing natural T regulatory cell phenotype were detected in viremic pigs. Interestingly, all viremic contact pigs also had comparable immune cell modulations.ConclusionReplicating PRRSV in both infected and contact pigs was found to be responsible for rapid modulation in NK cell-meditated cytotoxicity and alteration in the production of important immune cytokines. PRRSV-induced immunological changes observed simultaneously at both cellular and cytokine levels early post-infection appear to be responsible for the delay in generation of adaptive immunity. As the study was performed in pigs maintained under commercial environmental conditions, this study has practical implications in design of protective vaccines.


Vaccine | 2011

Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant

Varun Dwivedi; Cordelia Manickam; R. A. Patterson; Katie Dodson; Michael P. Murtaugh; Jordi B. Torrelles; Larry S. Schlesinger; Gourapura J. Renukaradhya

Abstract Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV.


International Journal of Nanomedicine | 2014

Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs

Basavaraj Binjawadagi; Varun Dwivedi; Cordelia Manickam; Kang Ouyang; Yun Wu; Ly James Lee; Jordi B. Torrelles; Gourapura J. Renukaradhya

Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately


International Journal of Nanomedicine | 2014

An innovative approach to induce cross-protective immunity against porcine reproductive and respiratory syndrome virus in the lungs of pigs through adjuvanted nanotechnology-based vaccination.

Basavaraj Binjawadagi; Varun Dwivedi; Cordelia Manickam; Kang Ouyang; Jordi B. Torrelles; Gourapura J. Renukaradhya

3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible.


Veterinary Microbiology | 2013

PLGA nanoparticle entrapped killed porcine reproductive and respiratory syndrome virus vaccine helps in viral clearance in pigs

Varun Dwivedi; Cordelia Manickam; Basavaraj Binjawadagi; Gourapura J. Renukaradhya

Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating respiratory disease of pigs. The disease is caused by the PRRS virus (PRRSV), an Arterivirus which is a highly mutating RNA virus. Widely used modified live PRRSV vaccines have failed to prevent PRRS outbreaks and reinfections; moreover, safety of the live virus vaccines is questionable. Though poorly immunogenic, inactivated PRRSV vaccine is safe. The PRRSV infects primarily the lung macrophages. Therefore, we attempted to strengthen the immunogenicity of inactivated/killed PRRSV vaccine antigens (KAg), especially in the pig respiratory system, through: 1) entrapping the KAg in biodegradable poly(lactic-co-glycolic acid) nanoparticles (NP-KAg); 2) coupling the NP-KAg with a potent mucosal adjuvant, whole cell lysate of Mycobacterium tuberculosis (M. tb WCL); and 3) delivering the vaccine formulation twice intranasally to growing pigs. We have previously shown that a single dose of NP-KAg partially cleared the challenged heterologous PRRSV. Recently, we reported that NP-KAg coupled with unentrapped M. tb WCL significantly cleared the viremia of challenged heterologous PRRSV. Since PRRSV is primarily a lung disease, our goal in this study was to investigate lung viral load and various immune correlates of protection at the lung mucosal surfaces and its parenchyma in vaccinated heterologous PRRSV-challenged pigs. Our results indicated that out of five different vaccine-adjuvant formulations, the combination of NP-KAg and unentrapped M. tb WCL significantly cleared detectable replicating infective PRRSV with a tenfold reduction in viral RNA load in the lungs, associated with substantially reduced gross and microscopic lung pathology. Immunologically, strong humoral (enhanced virus neutralization titers by high avidity antibodies) and cell-mediated immune responses (augmented population of interferon-γ secreting CD4+ and CD8+ lymphocytes and reduced secretion of immunosuppressive cytokines) in the lungs were observed. In conclusion, combination of NP-KAg and soluble M. tb WCL elicits broadly cross-protective anti-PRRSV immunity in the pig respiratory system.


PLOS ONE | 2012

Biodegradable Nanoparticle-Entrapped Vaccine Induces Cross-Protective Immune Response against a Virulent Heterologous Respiratory Viral Infection in Pigs

Varun Dwivedi; Cordelia Manickam; Basavaraj Binjawadagi; Dechamma Hosur Joyappa; Gourapura J. Renukaradhya

Abstract Porcine reproductive and respiratory syndrome (PRRS) is a chronic viral disease of pigs, has been posing a huge economic concern to pig industry worldwide. In this study, we developed biodegradable PLGA [poly(d,l-lactide-co-glycolide)] nanoparticle-entrapped killed PRRSV vaccine (Nano-KAg), and administered intranasally to pigs once and evaluated the immune correlates. In Nano-KAg vaccinated homologous virus challenged pigs, complete clearance of viremia was observed in 2 weeks, associated with a significant increase in virus neutralizing titers only in the lungs, compared to both unvaccinated and killed vaccine vaccinated pigs. The lung homogenate and sera of Nano-KAg vaccinated pigs had higher levels of IFN-γ and lower levels of TGF-β than control groups. Restimulation of mononuclear cells isolated from the lungs, blood, BAL, and TBLN of Nano-KAg vaccinated pigs’ secreted significantly increased levels of Th1 cytokines, IFN-γ and IL-12. In addition, higher frequencies of CD3+CD8+, CD4+CD8+, and γδ T cells, and reduced frequency of Foxp3+ T-regulatory cells were observed in Nano-KAg vaccinated pigs. Thus, intranasal delivery of Nano-KAg vaccine may be a suitable strategy to elicit anti-PRRSV immune response required to better clear viremia in pigs.


Vaccine | 2011

Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces protective immune responses to a modified live porcine reproductive and respiratory syndrome virus vaccine in pigs

Varun Dwivedi; Cordelia Manickam; R. A. Patterson; Katie Dodson; Matthew Weeman; Gourapura J. Renukaradhya

Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV). We entrapped PLGA [poly (lactide-co-glycolides)] nanoparticles with killed PRRSV antigens (Nano-KAg) and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.


Animal Health Research Reviews | 2012

Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective

Gourapura J. Renukaradhya; Varun Dwivedi; Cordelia Manickam; Basavaraj Binjawadagi; David Benfield

Abstract Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8+and CD4+ T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.


Veterinary Microbiology | 2013

Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs

Cordelia Manickam; Varun Dwivedi; R. A. Patterson; Tracey L. Papenfuss; Gourapura J. Renukaradhya

Abstract Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV.

Collaboration


Dive into the Varun Dwivedi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gourapura J. Renukaradhya

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahesh Khatri

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

R. A. Patterson

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. Cook

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge