Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Varune Rohan Ramnarine is active.

Publication


Featured researches published by Varune Rohan Ramnarine.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer

Roya Navab; Dan Strumpf; Bizhan Bandarchi; Chang-Qi Zhu; Melania Pintilie; Varune Rohan Ramnarine; Emin Ibrahimov; Nikolina Radulovich; Lisa Leung; Malgorzata Barczyk; Devang Panchal; Christine To; James J. Yun; Sandy D. Der; Frances A. Shepherd; Igor Jurisica; Ming-Sound Tsao

The tumor microenvironment strongly influences cancer development, progression, and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene-expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-β signaling pathway. We have identified a subset of 11 genes (13 probe sets) that formed a prognostic gene-expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein–protein interaction analyses of these and published cancer stroma-associated gene-expression changes revealed prominent involvement of the focal adhesion and MAPK signaling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture–microdissected corresponding primary tumor stroma compared with the matched normal lung. Six of these 14 genes could be induced by TGF-β1 in NF. The results establish the prognostic impact of CAF-associated gene-expression changes in NSCLC patients.


Lancet Oncology | 2014

Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study

Emilie Lalonde; Adrian Ishkanian; Jenna Sykes; Michael Fraser; Helen Ross-Adams; Nicholas Erho; Mark J. Dunning; Silvia Halim; Alastair D. Lamb; Nathalie C Moon; Gaetano Zafarana; Anne Warren; Xianyue Meng; John Thoms; Michal R Grzadkowski; Alejandro Berlin; Cherry Have; Varune Rohan Ramnarine; Cindy Q. Yao; Chad A. Malloff; Lucia L. Lam; Honglei Xie; Nicholas J. Harding; Denise Y. F. Mak; Kenneth C. Chu; Lauren C. Chong; Dorota H Sendorek; Christine P'ng; Colin Collins; Jeremy A. Squire

BACKGROUND Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.


Cancer | 2012

Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy

Gaetano Zafarana; Adrian Ishkanian; Chad A. Malloff; Jennifer A. Locke; Jenna Sykes; John Thoms; Wan L. Lam; Jeremy A. Squire; Maisa Yoshimoto; Varune Rohan Ramnarine; Alice Meng; Igor Jurisca; Michael Milosevic; Melania Pintilie; Theo H. van der Kwast; Robert G. Bristow

Despite the use of PSA, Gleason score, and T‐category as prognosticators in intermediate‐risk prostate cancer, 20–40% of patients will fail local therapy. In order to optimize treatment approaches for intermediate‐risk patients, additional genetic prognosticators are needed. Previous reports using array comparative genomic hybridization (aCGH) in radical prostatectomy cohorts suggested a combination of allelic loss of the PTEN gene on 10q and allelic gain of the c‐MYC gene on 8q were associated with metastatic disease. We tested whether copy number alterations (CNAs) in PTEN (allelic loss) and c‐MYC (allelic gain) were associated with biochemical relapse following modern‐era, image‐guided radiotherapy (mean dose 76.4 Gy). We used aCGH analyses validated by fluorescence in‐situ hybridization (FISH) of DNA was derived from frozen, pre‐treatment biopsies in 126 intermediate‐risk prostate cancer patients. Patients whose tumors had CNAs in both PTEN and c‐MYC had significantly increased genetic instability (percent genome alteration; PGA) compared to tumors with normal PTEN and c‐MYC status (p < 0.0001). We demonstrate that c‐MYC gain alone, or combined c‐MYC gain and PTEN loss, were increasingly prognostic for relapse on multivariable analyses (hazard ratios (HR) of 2.58/p = 0.005 and 3.21/p = 0.0004; respectively). Triaging patients by the use of CNAs within pre‐treatment biopsies may allow for better use of systemic therapies to target sub‐clinical metastases or locally recurrent disease and improve clinical outcomes. Cancer 2012.


Clinical Cancer Research | 2012

NKX3.1 Haploinsufficiency Is Prognostic for Prostate Cancer Relapse following Surgery or Image-Guided Radiotherapy

Jennifer A. Locke; Gaetano Zafarana; Adrian Ishkanian; Michael Milosevic; John Thoms; Cherry Have; Chad A. Malloff; Wan L. Lam; Jeremy A. Squire; Melania Pintilie; Jenna Sykes; Varune Rohan Ramnarine; Alice Meng; Omer Ahmed; Igor Jurisica; Theo H. van der Kwast; Robert G. Bristow

Background: Despite the use of prostate specific antigen (PSA), Gleason-score, and T-category as prognostic factors, up to 40% of patients with intermediate-risk prostate cancer will fail radical prostatectomy or precision image-guided radiotherapy (IGRT). Additional genetic prognosticators are needed to triage these patients toward intensified combination therapy with novel targeted therapeutics. We tested the role of the NKX3.1 gene as a determinant of treatment outcome given its reported roles in tumor initiating cell (TIC) renewal, the DNA damage response, and cooperation with c-MYC during prostate cancer progression. Methods: Using high-resolution array comparative genomic hybridization (aCGH), we profiled the copy number alterations in TIC genes using tumor DNA from frozen needle biopsies derived from 126 intermediate-risk patients who underwent IGRT. These data were correlated to biochemical relapse-free rate (bRFR) by the Kaplan–Meier method and Cox proportional hazards models. Results: A screen of the aCGH-IGRT data for TIC genes showed frequent copy number alterations for NKX3.1, PSCA, and c-MYC. NKX3.1 haploinsufficiency was associated with increased genomic instability independent of PSA, T-category, and Gleason-score. After adjusting for clinical factors in a multivariate model, NKX3.1 haploinsufficiency was associated with bRFR when tested alone (HR = 3.05, 95% CI: 1.46–6.39, P = 0.0030) or when combined with c-MYC gain (HR = 3.88, 95% CI: 1.78–8.49, P = 0.00067). A similar association was observed for patients following radical prostatectomy with a public aCGH database. NKX3.1 status was associated with positive biopsies post-IGRT and increased clonogen radioresistance in vitro. Conclusions: Our results support the use of genomic predictors, such as NKX3.1 status, in needle biopsies for personalized approaches to prostate cancer management. Clin Cancer Res; 18(1); 308–16. ©2011 AACR.


Journal of Clinical Investigation | 2012

Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma

Chad M. McKee; Danmei Xu; Yunhong Cao; Sheheryar Kabraji; Danny Allen; Veerle Kersemans; John Beech; Sean Smart; Freddie C. Hamdy; Adrian Ishkanian; Jenna Sykes; Melania Pintile; Michael Milosevic; Theodorus H. van der Kwast; Gaetano Zafarana; Varune Rohan Ramnarine; Igor Jurisica; Chad Mallof; Wan L. Lam; Robert G. Bristow; Ruth J. Muschel

Prostate adenocarcinoma (CaP) patients are classified into low-, intermediate-, and high-risk groups that reflect relative survival categories. While there are accepted treatment regimens for low- and high-risk patients, intermediate-risk patients pose a clinical dilemma, as treatment outcomes are highly variable for these individuals. A better understanding of the factors that regulate the progression of CaP is required to delineate risk. For example, aberrant activation of the Hedgehog (Hh) pathway is implicated in CaP progression. Here, we identify the serine protease inhibitor protease nexin 1 (PN1) as a negative regulator of Hh signaling in prostate. Using human CaP cell lines and a mouse xenograft model of CaP, we demonstrate that PN1 regulates Hh signaling by decreasing protein levels of the Hh ligand Sonic (SHH) and its downstream effectors. Furthermore, we show that SHH expression enhanced tumor growth while overexpression of PN1 inhibited tumor growth and angiogenesis in mice. Finally, using comparative genome hybridization, we found that genetic alterations in Hh pathway genes correlated with worse clinical outcomes in intermediate-risk CaP patients, indicating the importance of this pathway in CaP.


The Prostate | 2012

Allelic loss of the loci containing the androgen synthesis gene, StAR, is prognostic for relapse in intermediate-risk prostate cancer†

Jennifer A. Locke; Gaetano Zafarana; Chad A. Malloff; Wan L. Lam; Jenna Sykes; Melania Pintilie; Varune Rohan Ramnarine; Alice Meng; Omer Ahmed; Igor Jurisica; Emma Tomlinson Guns; Theo H. van der Kwast; Michael Milosevic; Robert G. Bristow

Androgen deprivation therapy (ADT) and novel agents targeting the androgen synthesis axis (e.g., abiraterone acetate) are adjuvant therapies that are currently, or may in the future be, combined with radiotherapy to reduce the chance of disease relapse. Little is known about allelic loss or gain pertaining to genes associated with the androgen synthesis axis and whether this is prognostic in patients who receive localized radiotherapy. In this hypothesis generating study, we conducted an array comparative genomic hybridization (aCGH) analysis of 33 androgen synthesis genes to identify potential prognostic factors for radiotherapy outcome.


European Urology | 2017

Stromal Gene Expression is Predictive for Metastatic Primary Prostate Cancer

Fan Mo; Dong Lin; Mandeep Takhar; Varune Rohan Ramnarine; Xin Dong; Robert H. Bell; Stanislav Volik; Kendric Wang; Hui Xue; Yuwei Wang; Anne Haegert; Shawn Anderson; Sonal Brahmbhatt; Nicholas Erho; Xinya Wang; Peter W. Gout; James Morris; R. Jeffrey Karnes; Robert B. Den; Eric A. Klein; Edward M. Schaeffer; Ashley E. Ross; Shancheng Ren; S. Cenk Sahinalp; Yingrui Li; Xun Xu; Jun Wang; Jian Wang; Martin Gleave; Elai Davicioni

BACKGROUND Clinical grading systems using clinical features alongside nomograms lack precision in guiding treatment decisions in prostate cancer (PCa). There is a critical need for identification of biomarkers that can more accurately stratify patients with primary PCa. OBJECTIVE To identify a robust prognostic signature to better distinguish indolent from aggressive prostate cancer (PCa). DESIGN, SETTING, AND PARTICIPANTS To develop the signature, whole-genome and whole-transcriptome sequencing was conducted on five PCa patient-derived xenograft (PDX) models collected from independent foci of a single primary tumor and exhibiting variable metastatic phenotypes. Multiple independent clinical cohorts including an intermediate-risk cohort were used to validate the biomarkers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The outcome measurement defining aggressive PCa was metastasis following radical prostatectomy. A generalized linear model with lasso regularization was used to build a 93-gene stroma-derived metastasis signature (SDMS). The SDMS association with metastasis was assessed using a Wilcoxon rank-sum test. Performance was evaluated using the area under the curve (AUC) for the receiver operating characteristic, and Kaplan-Meier curves. Univariable and multivariable regression models were used to compare the SDMS alongside clinicopathological variables and reported signatures. AUC was assessed to determine if SDMS is additive or synergistic to previously reported signatures. RESULTS AND LIMITATIONS A close association between stromal gene expression and metastatic phenotype was observed. Accordingly, the SDMS was modeled and validated in multiple independent clinical cohorts. Patients with higher SDMS scores were found to have worse prognosis. Furthermore, SDMS was an independent prognostic factor, can stratify risk in intermediate-risk PCa, and can improve the performance of other previously reported signatures. CONCLUSIONS Profiling of stromal gene expression led to development of an SDMS that was validated as independently prognostic for the metastatic potential of prostate tumors. PATIENT SUMMARY Our stroma-derived metastasis signature can predict the metastatic potential of early stage disease and will strengthen decisions regarding selection of active surveillance versus surgery and/or radiation therapy for prostate cancer patients. Furthermore, profiling of stroma cells should be more consistent than profiling of diverse cellular populations of heterogeneous tumors.


GigaScience | 2018

The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications

Varune Rohan Ramnarine; Mohammed Alshalalfa; Fan Mo; Noushin Nabavi; Nicholas Erho; Mandeep Takhar; Robert Shukin; Sonal Brahmbhatt; Alexander Gawronski; Maxim Kobelev; Mannan Nouri; Dong Lin; Harrison Tsai; Tamara L. Lotan; R Jefferey Karnes; Mark A. Rubin; Amina Zoubeidi; Martin Gleave; Cenk Sahinalp; Alexander W. Wyatt; Stanislav Volik; Himisha Beltran; Elai Davicioni; Yuzhuo Wang; Colin Collins

Abstract Background Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.


Oncotarget | 2018

Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

Tomas Tokar; Chiara Pastrello; Varune Rohan Ramnarine; Chang-Qi Zhu; Kenneth J. Craddock; Larrisa A. Pikor; Emily A. Vucic; Simon Vary; Frances A. Shepherd; Ming-Sound Tsao; Wan L. Lam; Igor Jurisica

In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status.


Oncotarget | 2014

NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer

Alejandro Berlin; Emilie Lalonde; Jenna Sykes; Gaetano Zafarana; Kenneth C. Chu; Varune Rohan Ramnarine; Adrian Ishkanian; Dorota H Sendorek; Ivan Pasic; Wan L. Lam; Igor Jurisica; Theo H. van der Kwast; Michael Milosevic; Paul C. Boutros; Robert G. Bristow

Collaboration


Dive into the Varune Rohan Ramnarine's collaboration.

Top Co-Authors

Avatar

Gaetano Zafarana

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Jenna Sykes

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chad A. Malloff

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wan L. Lam

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

John Thoms

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Melania Pintilie

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Michael Milosevic

Princess Margaret Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge