Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vashendriya V.V. Hira is active.

Publication


Featured researches published by Vashendriya V.V. Hira.


Cancer Research | 2015

Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198

Remco J. Molenaar; Dennis Botman; Myrthe A Smits; Vashendriya V.V. Hira; Sanne A. M. van Lith; Jan Stap; Peter Henneman; Mohammed Khurshed; Krissie Lenting; Adri Mul; Dionysia Dimitrakopoulou; Cornelis M. van Drunen; Ron A. Hoebe; Tomas Radivoyevitch; Johanna W. Wilmink; Jaroslaw P. Maciejewski; W. Peter Vandertop; William Leenders; Fonnet E. Bleeker; Cornelis J. F. Van Noorden

Isocitrate dehydrogenase 1 (IDH1) is mutated in various types of human cancer to IDH1(R132H), a structural alteration that leads to catalysis of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate. In this study, we present evidence that small-molecule inhibitors of IDH1(R132H) that are being developed for cancer therapy may pose risks with coadministration of radiotherapy. Cancer cells heterozygous for the IDH1(R132H) mutation exhibited less IDH-mediated production of NADPH, such that after exposure to ionizing radiation (IR), there were higher levels of reactive oxygen species, DNA double-strand breaks, and cell death compared with IDH1 wild-type cells. These effects were reversed by the IDH1(R132H) inhibitor AGI-5198. Exposure of IDH1 wild-type cells to D-2-hydroxyglutarate was sufficient to reduce IDH-mediated NADPH production and increase IR sensitivity. Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent of the well-described DNA hypermethylation phenotype in IDH1-mutated cancers. Thus, our results argue that altered oxidative stress responses are a plausible mechanism to understand the radiosensitivity of IDH1-mutated cancer cells. Further, they offer an explanation for the relatively longer survival of patients with IDH1-mutated tumors, and they imply that administration of IDH1(R132H) inhibitors in these patients may limit irradiation efficacy in this setting.


Journal of Histochemistry and Cytochemistry | 2015

CD133+ and Nestin+ Glioma Stem-Like Cells Reside Around CD31+ Arterioles in Niches that Express SDF-1α, CXCR4, Osteopontin and Cathepsin K

Vashendriya V.V. Hira; Kimberly Ploegmakers; Frederieke Grevers; Urška Verbovšek; Carlos Silvestre-Roig; Eleonora Aronica; Wikky Tigchelaar; Tamara Lah Turnšek; Remco Molenaar; Cornelis Van Noorden

Poor survival of high-grade glioma is at least partly caused by glioma stem-like cells (GSLCs) that are resistant to therapy. GSLCs reside in niches in close vicinity of endothelium. The aim of the present study was to characterize proteins that may be functional in the GSLC niche by performing immunohistochemistry on serial cryostat sections of human high-grade glioma samples. We have found nine niches in five out of five high-grade glioma samples that were all surrounding arterioles with CD31+ endothelial cells and containing cellular structures that were CD133+ and nestin+. All nine niches expressed stromal-derived factor-1α (SDF-1α), its receptor C-X-C chemokine receptor type 4 (CXCR4), osteopontin and cathepsin K. SDF-1α plays a role in homing of CXCR4+ stem cells and leukocytes, whereas osteopontin and cathepsin K promote migration of cancer cells and leukocytes. Leukocyte-related markers, such as CD68, macrophage matrix metalloprotease-9, CD177 and neutrophil elastase were often but not always detected in the niches. We suggest that SDF-1α is involved in homing of CXCR4+ GSLCs and leukocytes and that cathepsin K and osteopontin are involved in the migration of GSLCs out of the niches.


Biochimica et Biophysica Acta | 2017

Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches

Vashendriya V.V. Hira; Cornelis J. F. Van Noorden; Hetty E. Carraway; Jaroslaw P. Maciejewski; Remco J. Molenaar

Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy.


Journal of Histochemistry and Cytochemistry | 2018

Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

Vashendriya V.V. Hira; Jill Wormer; Hala Kakar; Barbara Breznik; Britt van der Swaan; Renske Hulsbos; Wikky Tigchelaar; Zbynek Tonar; Mohammed Khurshed; Remco J. Molenaar; Cornelis J. F. Van Noorden

In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell–derived factor-1α (SDF-1α), C-X-C chemokine receptor type 4 (CXCR4), osteopontin (OPN), and cathepsin K (CatK) are expressed in hypoxic GSC niches around arterioles in five human glioblastoma samples. In HSC niches, HSCs are retained by binding of SDF-1α and OPN to their receptors CXCR4 and CD44, respectively. Protease CatK cleaves SDF-1α to release HSCs out of niches. The aim of the present study was to reproduce the immunohistochemical localization of these GSC markers in 16 human glioblastoma samples with the addition of three novel markers. Furthermore, we assessed the type of blood vessels associated with GSC niches. In total, we found seven GSC niches containing CD133-positive and nestin-positive GSCs as a single-cell layer exclusively around the tunica adventitia of 2% of the CD31-positive and SMA-positive arterioles and not around capillaries and venules. Niches expressed SDF-1α, CXCR4, CatK, OPN, CD44, hypoxia-inducible factor-1α, and vascular endothelial growth factor. In conclusion, we show that GSC niches are present around arterioles and express bone marrow HSC niche proteins.


Biochimica et Biophysica Acta | 2017

Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells

Vashendriya V.V. Hira; Urška Verbovšek; Barbara Breznik; Matic Srdič; Marko Novinec; Hala Kakar; Jill Wormer; Britt van der Swaan; Brigita Lenarčič; Luiz Juliano; Shwetal Mehta; Cornelis J. F. Van Noorden; Tamara T. Lah

Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.


Journal of Histochemistry and Cytochemistry | 2018

Glioma Stem Cell Niches in Human Glioblastoma Are Periarteriolar

Vashendriya V.V. Hira; Diana A. Aderetti; Cornelis J. F. Van Noorden

Survival of primary brain tumor (glioblastoma) patients is seriously hampered by glioma stem cells (GSCs) that are distinct therapy-resistant self-replicating pluripotent cancer cells. GSCs reside in GSC niches, which are specific protective microenvironments in glioblastoma tumors. We have recently found that GSC niches are hypoxic periarteriolar, whereas in most studies, GSC niches are identified as hypoxic perivascular. The aim of this review is to critically evaluate the literature on perivascular GSC niches to establish whether these are periarteriolar, pericapillary, perivenular, and/or perilymphatic. We found six publications showing images of human glioblastoma tissue containing perivascular GSC niches without any specification of the vessel type. However, it is frequently assumed that these vessels are capillaries which are exchange vessels, whereas arterioles and venules are transport vessels. Closer inspection of the figures of these publications showed vessels that were not capillaries. Whether these vessels were arterioles or venules was difficult to determine in one case, but in the other cases, these were clearly arterioles and their perivascular niches were similar to the periarteriolar niches we have found. Therefore, we conclude that in human glioblastoma tumors, GSC niches are hypoxic periarteriolar and are structurally and functionally look-alikes of hematopoietic stem cell niches in the bone marrow.


Scientific Reports | 2018

Three-dimensional histochemistry and imaging of human gingiva

Adriano Azaripour; Tonny Lagerweij; Christina Scharfbillig; Anna Elisabeth Jadczak; Britt van der Swaan; Manon Molenaar; Rens van der Waal; Karoline Kielbassa; Wikky Tigchelaar; Daisy I. Picavet; Ard Jonker; Esther M. L. Hendrikx; Vashendriya V.V. Hira; Mohammed Khurshed; Cornelis J. F. Van Noorden

In the present study, 3D histochemistry and imaging methodology is described for human gingiva to analyze its vascular network. Fifteen human gingiva samples without signs of inflammation were cleared using a mixture of 2-parts benzyl benzoate and 1-part benzyl alcohol (BABB), after being immunofluorescently stained for CD31, marker of endothelial cells to visualize blood vessels in combination with fluorescent DNA dyes. Samples were imaged in 3D with the use of confocal microscopy and light-sheet microscopy and image processing. BABB clearing caused limited tissue shrinkage 13 ± 7% as surface area and 24 ± 1% as volume. Fluorescence remained intact in BABB-cleared gingiva samples and light-sheet microscopy was an excellent tool to image gingivae whereas confocal microscopy was not. Histochemistry on cryostat sections of gingiva samples after 3D imaging validated structures visualized in 3D. Three-dimensional images showed the vascular network in the stroma of gingiva with one capillary loop in each stromal papilla invading into the epithelium. The capillary loops were tortuous with structural irregularities that were not apparent in 2D images. It is concluded that 3D histochemistry and imaging methodology described here is a promising novel approach to study structural aspects of human gingiva in health and disease.


Journal of Visualized Experiments | 2018

Metabolic Mapping: Quantitative Enzyme Cytochemistry and Histochemistry to Determine the Activity of Dehydrogenases in Cells and Tissues

Remco J. Molenaar; Mohammed Khurshed; Vashendriya V.V. Hira; Cornelis J. F. Van Noorden

Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P)+ and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenases activity. The formazans absorbance is therefore a direct measure of the dehydrogenases activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.


Journal of Molecular Histology | 2018

Cysteine cathepsins B, X and K expression in peri-arteriolar glioblastoma stem cell niches

Barbara Breznik; Clara Limbaeck Stokin; Janko Kos; Mohammed Khurshed; Vashendriya V.V. Hira; Roman Bošnjak; Tamara T. Lah; Cornelis J. F. Van Noorden

Glioblastoma (GBM) is the most lethal brain tumor also due to malignant and therapy-resistant GBM stem cells (GSCs) that are localized in protecting hypoxic GSC niches. Some members of the cysteine cathepsin family of proteases have been found to be upregulated in GBM. Cathepsin K gene expression is highly elevated in GBM tissue versus normal brain and it has been suggested to regulate GSC migration out of the niches. Here, we investigated the cellular distribution of cathepsins B, X and K in GBM tissue and whether these cathepsins are co-localized in GSC niches. Therefore, we determined expression of these cathepsins in serial paraffin sections of 14 human GBM samples and serial cryostat sections of two samples using immunohistochemistry and metabolic mapping of cathepsin activity using selective fluorogenic substrates. We detected cathepsins B, X and K in peri-arteriolar GSC niches in 9 out of 16 GBM samples, which were defined by co-expression of the GSC marker CD133, the niche marker stromal-derived factor-1α (SDF-1α) and smooth muscle actin as a marker for arterioles. The expression of cathepsin B and X was detected in stromal cells and cancer cells throughout the GBM sections, whereas cathepsin K expression was more restricted to arteriole-rich regions in the GBM sections. Metabolic mapping showed that cathepsin B, but not cathepsin K is active in GSC niches. On the basis of these findings, it is concluded that cathepsins B, X and K have distinct functions in GBM and that cathepsin K is the most likely GSC niche-related cathepsin of the three cathepsins investigated.


Biochimica et Biophysica Acta | 2018

The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastoma

Diana A. Aderetti; Vashendriya V.V. Hira; Remco J. Molenaar; Cornelis J. F. Van Noorden

Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies.

Collaboration


Dive into the Vashendriya V.V. Hira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hala Kakar

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Jill Wormer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge