Vasileios Vavourakis
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vasileios Vavourakis.
international conference on robotics and automation | 2012
Asimina Kazakidi; Vasileios Vavourakis; Nikolaos Pateromichelakis; John A. Ekaterinaris; Dimitris P. Tsakiris
We consider robotic analogues of the arms of the octopus, a cephalopod exhibiting a wide variety of dexterous movements and complex shapes, moving in an aquatic environment. Although an invertebrate, the octopus can vary the stiffness of its long arms and generate large forces, while also performing rapid motions within its aquatic environment. Previous studies of elongated robotic systems, moving in fluid environments, have mostly oversimplified the effects of flow and the generated hydrodynamic forces, in their dynamical models. The present paper uses computational fluid dynamic (CFD) analysis to perform high-fidelity numerical simulations of robotic prototypes emulating the morphology of octopus arms. The direction of the flow stream and the arm geometry (e.g., the presence of suckers), were among the parameters that were shown to affect significantly the flow field structure and the resulting hydrodynamic forces, which have a non-uniform distribution along the arm. The CFD results are supported by vortex visualization experiments in a water tank. The results of this investigation are being exploited for the design of soft-bodied robotic systems and the development of related motion control strategies.
Physics in Medicine and Biology | 2016
John H. Hipwell; Vasileios Vavourakis; Lianghao Han; Thomy Mertzanidou; Björn Eiben; David J. Hawkes
Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.
Journal of Biomechanics | 2011
Vasileios Vavourakis; Yannis Papaharilaou; John A. Ekaterinaris
Hemodynamic conditions in large arteries are significantly affected by the interaction of the pulsatile blood flow with the distensible arterial wall. A numerical procedure for solving the fluid-structure interaction problem encountered in cardiovascular flows is presented. We consider a patient-specific carotid bifurcation geometry, obtained from 3D reconstruction of in vivo acquired tomography images, which yields a geometrical representation of the artery corresponding to its pressurized state. To recover the geometry of the artery in its zero-pressure state which is required for a fluid-structure interaction simulation we utilize inverse finite elastostatics. Time-dependent flow simulations with in vivo measured inflow volume flow rate in the 3D undeformed artery are performed through the finite element method. The coupled-momentum method for fluid-structure interaction is adopted to incorporate the influence of wall compliance in the numerical computation of the time varying flow domain. To demonstrate the importance in recovering the zero-pressure state of the artery in hemodynamic simulations we compute the time varying flow field with compliant walls for the original and the zero-pressure state corrected geometric configurations of the carotid bifurcation. The most important resulting effects in the hemodynamic environment are evaluated. Our results show a significant change in the wall shear stress distribution and the spatiotemporal extent of the recirculation regions.
Proceedings of SPIE | 2014
Björn Eiben; Vasileios Vavourakis; John H. Hipwell; Sven Kabus; Cristian Lorenz; Thomas Buelow; David J. Hawkes
In biomechanical simulations of the human breast, the analysed geometry is often reconstructed from in vivo medical imaging procedures. For example in dynamic contrast enhanced magnetic resonance imaging, the acquired geometry of the patients breast when lying in the prone position represents a deformed configuration that is pre-stressed by typical in vivo conditions and gravity. Thus, physically realistic simulations require consideration of this loading and, hence, establishing the undeformed configuration is an important task for accurate and reliable biomechanical modelling of the breast. We compare three different numerical approaches to recover the unloaded configuration from the loaded geometry given patient-specific biomechanical models built from prone and supine MR images. The algorithms compared are:(i) the simple inversion of gravity without the consideration of pre-stresses, (ii) an inversefinite deformation approach and (iii) afixed point type iterative approach which uses only forward simulations. It is shown that the iterative and the inverse approach produce similar zero-gravity estimates, where as the simple inversion of gravity is only appropriate for small or highly constrained deformations.
Annals of Biomedical Engineering | 2016
Vasileios Vavourakis; John H. Hipwell; David J. Hawkes
Physically realistic patient-specific biomechanical modelling is of paramount importance for many medical applications, where the geometry of tissues or organs is usually constructed from in vivo images. However, it is common for such biological structures to correspond to a deformed state due to being under external loadings. This necessitates the determination of the stress distribution of the known deformed state through an inverse analysis approach. To achieve this, we propose here a generalised finite element displacement/pressure (u/p)-formulation for evaluating the unloaded configuration of in vivo biological soft tissues that exhibit quasi-incompressible behaviour under finite deformations. Validity and applicability of the proposed numerical framework to practical inverse analysis problems in biomechanics is demonstrated through various numerical examples. The corresponding simulations utilise in vivo measurements of patient-specific geometries derived from different medical imaging modalities, and include recovery of the pressure-free configuration of human aortas and the gravity-free shape of the female breast.
Computer Methods in Biomechanics and Biomedical Engineering | 2014
Vasileios Vavourakis; Asimina Kazakidi; Dimitris P. Tsakiris; John A. Ekaterinaris
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney–Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton–Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
Computer Methods in Biomechanics and Biomedical Engineering | 2015
Asimina Kazakidi; Vasileios Vavourakis; Dimitris P. Tsakiris; John A. Ekaterinaris
The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors.
PLOS Computational Biology | 2017
Vasileios Vavourakis; P. A. Wijeratne; Rebecca J. Shipley; Marilena Loizidou; Triantafyllos Stylianopoulos; David J. Hawkes
Vascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature.
PLOS ONE | 2016
Vasileios Vavourakis; Bjoern Eiben; John H. Hipwell; Norman R. Williams; Mo Keshtgar; David J. Hawkes
Surgical treatment for early-stage breast carcinoma primarily necessitates breast conserving therapy (BCT), where the tumour is removed while preserving the breast shape. To date, there have been very few attempts to develop accurate and efficient computational tools that could be used in the clinical environment for pre-operative planning and oncoplastic breast surgery assessment. Moreover, from the breast cancer research perspective, there has been very little effort to model complex mechano-biological processes involved in wound healing. We address this by providing an integrated numerical framework that can simulate the therapeutic effects of BCT over the extended period of treatment and recovery. A validated, three-dimensional, multiscale finite element procedure that simulates breast tissue deformations and physiological wound healing is presented. In the proposed methodology, a partitioned, continuum-based mathematical model for tissue recovery and angiogenesis, and breast tissue deformation is considered. The effectiveness and accuracy of the proposed numerical scheme is illustrated through patient-specific representative examples. Wound repair and contraction numerical analyses of real MRI-derived breast geometries are investigated, and the final predictions of the breast shape are validated against post-operative follow-up optical surface scans from four patients. Mean (standard deviation) breast surface distance errors in millimetres of 3.1 (±3.1), 3.2 (±2.4), 2.8 (±2.7) and 4.1 (±3.3) were obtained, demonstrating the ability of the surgical simulation tool to predict, pre-operatively, the outcome of BCT to clinically useful accuracy.
PLOS ONE | 2017
P. A. Wijeratne; John H. Hipwell; David J. Hawkes; Triantafyllos Stylianopoulos; Vasileios Vavourakis
We present an in-silico model of avascular poroelastic tumour growth coupled with a multiscale biphasic description of the tumour–host environment. The model is specified to in-vitro data, facilitating biophysically realistic simulations of tumour spheroid growth into a dense collagen hydrogel. We use the model to first confirm that passive mechanical remodelling of collagen fibres at the tumour boundary is driven by solid stress, and not fluid pressure. The model is then used to demonstrate the influence of collagen microstructure on peritumoural permeability and interstitial fluid flow. Our model suggests that at the tumour periphery, remodelling causes the peritumoural stroma to become more permeable in the circumferential than radial direction, and the interstitial fluid velocity is found to be dependent on initial collagen alignment. Finally we show that solid stresses are negatively correlated with peritumoural permeability, and positively correlated with interstitial fluid velocity. These results point to a heterogeneous, microstructure-dependent force environment at the tumour–peritumoural stroma interface.