Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasilije Manovic is active.

Publication


Featured researches published by Vasilije Manovic.


Energy and Environmental Science | 2015

A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems

Dawid P. Hanak; Edward J. Anthony; Vasilije Manovic

A nearly complete decarbonisation of the power sector is essential to meet the European Union target for greenhouse gas emissions reduction. Carbon capture and storage technologies have been identified as a key measure in reducing the carbon-intensity of the power sector. However, no cost-effective technology has yet been developed on a commercial scale, which is mostly due to high capital cost. Moreover, the mature technologies, such as amine scrubbing or oxy-combustion technologies, impose a high projected efficiency penalty (8–12.5% points) upon integration to the power plant. The calcium looping process, which is currently being tested experimentally in bench- and pilot-scale plants worldwide, is regarded as a promising alternative to the chemical solvent scrubbing approach, as it leads to the projected efficiency penalty of 6–8% points. The calcium looping concept has been developing rapidly due to the introduction of new test facilities, new correlations for process modelling, and process configurations for improved performance. The first part of this review provides an overview of the bench- and pilot-plant test facilities available worldwide. The focus is put on summarising the characteristics and operating conditions of the test facilities, as well as extracting the key experimental findings. Additionally, the experimental data suitable for validation or verification of the process models are presented. In the second part, the approaches to the carbonator and the calciner reactor modelling are summarised and classified in five model complexity levels. Moreover, the model limitations are assessed and the needs for modelling baselines for further process analyses are identified. Finally, in the third part the approaches for the integration of calcium looping to the power generation systems and for the improvement of the process performance are identified and evaluated. This review indicates that calcium looping integration resulted in the projected efficiency penalty of 2.6–7.9% points for the coal-fired power plants and 9.1–11.4% points for the combined-cycle power plants. Also, it was found that the calcium looping process can be used to develop a novel high-efficiency (46.7%LHV) coal-fired power generation system, making this technology even more promising compared to the other CO2 capture technologies.


International Journal of Environmental Research and Public Health | 2010

Lime-based sorbents for high-temperature CO2 capture--a review of sorbent modification methods.

Vasilije Manovic; Edward J. Anthony

This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.


Environmental Science & Technology | 2013

High-Purity Hydrogen via the Sorption-Enhanced Steam Methane Reforming Reaction over a Synthetic CaO-Based Sorbent and a Ni Catalyst

Marcin Broda; Vasilije Manovic; Qasim Imtiaz; Agnieszka M. Kierzkowska; Edward J. Anthony; Christoph R. Müller

Sorbent-enhanced steam methane reforming (SE-SMR) is an emerging technology for the production of high-purity hydrogen from hydrocarbons with in situ CO2 capture. Here, SE-SMR was studied using a mixture containing a Ni-hydrotalcite-derived catalyst and a synthetic, Ca-based, calcium aluminate supported CO2 sorbent. The fresh and cycled materials were characterized using N2 physisorption, X-ray diffraction, and scanning and transmission electron microscopy. The combination of a Ni-hydrotalcite catalyst and the synthetic CO2 sorbent produced a stream of high-purity hydrogen, that is, 99 vol % (H2O- and N2-free basis). The CaO conversion of the synthetic CO2 sorbent was 0.58 mol CO2/mol CaO after 10 cycles, which was more than double the value achieved by limestone. The favorable CO2 capture characteristics of the synthetic CO2 sorbent were attributed to the uniform dispersion of CaO on a stable nanosized mayenite framework, thus retarding thermal sintering of the material. On the other hand, the cycled limestone lost its nanostructured morphology completely over 10 SE-SMR cycles due to its intrinsic lack of a support component.


Environmental Science & Technology | 2011

Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials.

Vasilije Manovic; Edward J. Anthony

Calcium looping cycles (CaL) and chemical looping combustion (CLC) are two new, developing technologies for reduction of CO(2) emissions from plants using fossil fuels for energy production, which are being intensively examined. Calcium looping is a two-stage process, which includes oxy-fuel combustion for sorbent regeneration, i.e., generation of a concentrated CO(2) stream. This paper discuss the development of composite materials which can use copper(II)-oxide (CuO) as an oxygen carrier to provide oxygen for the sorbent regeneration stage of calcium looping. In other words, the work presented here involves integration of calcium looping and chemical looping into a new class of postcombustion CO(2) capture processes designated as integrated CaL and CLC (CaL-CLC or Ca-Cu looping cycles) using composite pellets containing lime (CaO) and CuO together with the addition of calcium aluminate cement as a binder. Their activity was tested in a thermogravimetric analyzer (TGA) during calcination/reduction/oxidation/carbonation cycles. The calcination/reduction typically was performed in methane (CH(4)), and the oxidation/carbonation stage was carried out using a gas mixture containing both CO(2) and O(2). It was confirmed that the material synthesized is suitable for the proposed cycles; with the very favorable finding that reduction/oxidation of the oxygen carrier is complete. Various schemes for the Ca-Cu looping process have been explored here that would be compatible with these new composite materials, along with some different possibilities for flow directions among carbonator, calciner, and air reactor.


Journal of Physical Chemistry A | 2010

Competition of Sulphation and Carbonation Reactions during Looping Cycles for CO2 Capture by CaO-Based Sorbents

Vasilije Manovic; Edward J. Anthony

Two types of sorbents are investigated here (natural limestone and highly reactive calcium aluminate pellets) to elucidate their reactivity in terms of sulphation and carbonation and determine the resulting effect on looping cycles for CO(2) capture. The sorbents are tested in a thermogravimetric analyzer (TGA) apparatus using typical synthetic flue gas mixtures containing 15% CO(2) and various concentrations of SO(2). The sulphation and carbonation conversions were determined during sulphation/carbonation/calcination cycles. The sorbent morphology and its changes were determined by means of a scanning electron microscope (SEM). The results showed that sulphation, that is, the formation of CaSO(4) at the sorbent surface, is a cumulative process with increasing numbers of reaction cycles, which hinders sorbent ability to capture CO(2). In the case of high sorbent reactivity, as determined by its morphology, the unfavorable effect of sulphation is more pronounced. Unfortunately, any increase in the temperature in the carbonation stage accelerates sulphation more than carbonation as a result of higher activation energy for the sulphation reaction. The SEM analyses showed that although sulphation and carbonation occur during cycles involving calcination, an unreacted core/partially sulphated shell sorbent particle pattern is formed. The main outcomes of this research indicate that special attention should be paid to the sulphation when more reactive and more expensive, synthetic CaO-based sorbents are used for CO(2) capture looping cycles. Desulphurization of flue gas before CO(2) capture appears to be essential because CO(2) looping cycles are so strongly affected by the presence of SO(2).


Journal of Environmental Engineering | 2009

Sintering and Reactivity of CaCO 3 -Based Sorbents for In Situ CO 2 Capture in Fluidized Beds under Realistic Calcination Conditions

Dennis Y. Lu; Robin W. Hughes; Edward J. Anthony; Vasilije Manovic

Sintering during calcination/carbonation may introduce substantial economic penalties for a CO2 looping cycle using limestone/dolomite-derived sorbents. Here, cyclic carbonation and calcination reactions were investigated for CO2 capture under fluidized bed combustion FBC conditions. The cyclic carbonation characteristics of CaCO3-derived sorbents were compared at various calcination temperatures 700-925°C and different gas stream compositions: pure N2 and a realistic calciner environment where high concentrations of CO280-90% and the presence of SO2 are expected. The conditions during carbonation employed here were 700°C and 15% CO2 in N2 and 0.18% or 0.50% SO2 in selected tests, i.e., typically expected for a carbonator. Up to 20 calcination/carbonation cycles were conducted using a thermogravimetric analyzer TGA apparatus. Three Canadian limestones were tested: Kelly Rock, Havelock, and Cadomin, using a prescreened particle size range of 400-650 m. In addition, calcined Kelly Rock and Cadomin samples were hydrated by steam and examined. Sorbent reactivity was reduced whenever SO2 was introduced to either the calcining or carbonation streams. The multicyclic capture capacity of CaO for CO2 was substantially reduced at high concentrations of CO2 during the sorbent regeneration process and carbonation conversion of the Kelly Rock sample obtained after 20 cycles was only 10.5%. Hydrated sorbents performed better for CO2 capture, but also showed significant deterioration following calcination in high CO2 gas streams. This indicates that high CO2 and SO2 levels in the gas stream lead to lower CaO conversion because of enhanced sintering and irreversible formation of CaSO4. Such effects can be reduced by separating sulfation and carbonation and by introducing steam to avoid extremely high CO2 atmospheres, albeit at a higher cost and/or increased engineering complexity.


Environmental Science & Technology | 2010

Enhancement of indirect sulphation of limestone by steam addition.

Michael C. Stewart; Vasilije Manovic; Edward J. Anthony; Arturo Macchi

The effect of water (H₂O(g)) on in situ SO₂ capture using limestone injection under (FBC) conditions was studied using a thermobalance and tube furnace. The indirect sulphation reaction was found to be greatly enhanced in the presence of H₂O(g). Stoichiometric conversion of samples occurred when sulphated with a synthetic flue gas containing 15% H₂O(g) in under 10 h, which is equivalent to a 45% increase in conversion as compared to sulphation without H₂O(g). Using gas pycnometry and nitrogen adsorption methods, it was shown that limestone samples sulphated in the presence of H₂O(g) undergo increased particle densification without any significant changes to pore area or volume. The microstructural changes and observed increase in conversion were attributed to enhanced solid-state diffusion in CaO/CaSO₄ in the presence of H₂O(g). Given steam has been shown to have such a strong influence on sulphation, whereas it had been previously regarded as inert, may prompt a revisiting of the classically accepted sulphation models and phenomena. These findings also suggest that steam injection may be used to enhance sulfur capture performance in fluidized beds firing low-moisture fuels such as petroleum coke.


Environmental Science & Technology | 2014

Effect of Pelletization and Addition of Steam on the Cyclic Performance of Carbon-Templated, CaO-Based CO2 Sorbents

Marcin Broda; Vasilije Manovic; Edward J. Anthony; Christoph R. Müller

In this work, we report the development of a synthetic CO2 sorbent that possesses a high cyclic CO2 uptake capacity and, in addition, sufficient mechanical strength to allow it to be used in fluidized-bed reactors. To overcome the problem of elutriation of the original powdered material, the synthetic CO2 sorbent was pelletized. An important aspect of this work was to assess the effect of steam on the cyclic CO2 capture capacity of the original, powdered CO2 sorbent and the pelletized material. After 30 cycles of repeated calcination and carbonation reactions conducted in a fluidized bed, the CO2 uptake of the pellets was 0.29 g of CO2/g of sorbent, a value that is 45% higher than that measured for the reference limestone. For the case that carbonation/calcination cycles were conducted in a thermogravimetric analyzer under steam-free carbonation conditions, the CO2 uptake of the best sorbent was 0.33 g of CO2/g of sorbent (after 10 cycles). Importantly, it should be noted that, after 10 cycles using wet carbonation conditions, the CO2 uptake of this material increased by 55% when compared to dry conditions. This observation was attributed to enhanced solid-state diffusion in the CaCO3 product layer under wet conditions. However, independent of the reaction conditions, the pelletized material showed a lower cyclic CO2 uptake when compared to the original powder. A detailed morphological characterization of the pellets indicated that the destruction of the primary, hollow micrometer-sized spheres during pelletization was responsible for the lower cyclic CO2 uptake of the pellets.


Environmental Science & Technology | 2012

Spray Water Reactivation/Pelletization of Spent CaO-based Sorbent from Calcium Looping Cycles

Vasilije Manovic; Yinghai Wu; Ian He; Edward J. Anthony

This paper presents a novel method for reactivation of spent CaO-based sorbents from calcium looping (CaL) cycles for CO(2) capture. A spent Cadomin limestone-derived sorbent sample from a pilot-scale fluidized bed (FBC) CaL reactor is used for reactivation. The calcined sorbent is sprayed by water in a pelletization vessel. This reactivation method produces pellets ready to be used in FBC reactors. Moreover, this procedure enables the addition of calcium aluminate cement to further enhance sorbent strength. The characterization of reactivated material by nitrogen physisorption (BET, BJH) and scanning electron microscopy (SEM) confirmed the enhanced morphology of sorbent particles for reaction with CO(2). This improved CO(2) carrying capacity was demonstrated in calcination/carbonation tests performed in a thermogravimetric analyzer (TGA). Finally, the resulting pellets displayed a high resistance to attrition during fluidization in a bubbling bed.


Energy and Environmental Science | 2016

Calcium looping with inherent energy storage for decarbonisation of coal-fired power plant

Dawid P. Hanak; Chechet Biliyok; Vasilije Manovic

Implementation of carbon capture and storage, nuclear power stations and wide utilisation of renewable energy sources have been identified as capable of reducing around 42% of the energy sector’s cumulative CO2 emissions between 2009 and 2050. In scenarios assuming high shares of renewable energy sources in the energy portfolio, energy storage technologies and the remaining power generating assets would be required to flexibly balance energy supply and demand. With nuclear power plants operating at base load, this task would be handled by flexible fossil fuel power plants with CO2 capture. However, mature CO2 capture systems were shown to impose high efficiency penalties (8–12.5% points) and are better suited for base-load operation. An emerging calcium looping process, which has also been considered for energy storage, has been found to offer lower efficiency penalties (5–8% points). This study presents a concept of the calcium looping process with inherent energy storage for decarbonisation of the coal-fired power plant. Analysis has revealed that the possible routes for energy storage in this process include CaO/CaCO3 solids storage, CaO/Ca(OH)2 solids storage and cryogenic O2 storage systems. Comparison of the CaO/CaCO3 storage and cryogenic O2 storage systems revealed that implementation of the latter would result in higher turndown of the entire system and would offer higher energy density. Also, the hydration reaction was found to improve the energy density of the CaO/CaCO3 energy storage system by 57.4%, from 307.2 kWth h m−3 to 483.6 kWth h m−3. Economic evaluation of the proposed concepts revealed that application of the cryogenic O2 storage system in the calcium looping CO2 capture process has the potential to increase the profitability of the integrated system, even over the reference coal-fired power plant without CO2 capture.

Collaboration


Dive into the Vasilije Manovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yinghai Wu

Natural Resources Canada

View shared research outputs
Top Co-Authors

Avatar

Firas N. Ridha

Natural Resources Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge