Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasiliki Tileli is active.

Publication


Featured researches published by Vasiliki Tileli.


Nature Materials | 2017

Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

Binghong Han; Kelsey A. Stoerzinger; Vasiliki Tileli; Andrew D. Gamalski; Eric A. Stach; Yang Shao-Horn

Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3-δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3-δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.


Applied Physics Letters | 2008

Evolution of the nanostructure of deposits grown by electron beam induced deposition

Juntao Li; Milos Toth; Vasiliki Tileli; Kathleen A. Dunn; Charlene J. Lobo; Bradley L. Thiel

Environmental scanning electron microscopy (ESEM) was used to perform electron beam induced deposition (EBID) using a WF6 precursor. The deposits consist of WO3 nanocrystals embedded in an amorphous matrix. Oxide formation is attributed to residual oxidizers present in the ESEM chamber during EBID. Under conditions of fixed low electron flux, the WO3 grain size and the degree of deposit crystallinity increase with time. These changes correlate with the degree of electron energy deposition into the material during growth, indicating that electron beam induced modification of as-grown material is significant in controlling the nanostructure and functionality of materials fabricated by EBID.


Nature Chemistry | 2017

Ionic solutions of two-dimensional materials

Patrick L. Cullen; Kathleen M. Cox; Mohammed K. Bin Subhan; Loren Picco; Oliver D Payton; David J. Buckley; Thomas S. Miller; Stephen A. Hodge; Neal T. Skipper; Vasiliki Tileli; Christopher A. Howard

Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.


Proceedings of SPIE | 2009

Phenomenology of electron-beam induced photoresist shrinkage trends

Benjamin Bunday; Aaron Cordes; John Allgair; Vasiliki Tileli; Yohanan Avitan; Ram Peltinov; Maayan Bar-Zvi; Ofer Adan; Eric Cottrell; Sean Hand

For many years, lithographic resolution has been the main obstacle in keeping the pace of transistor densification to meet Moores Law. For the 45 nm node and beyond, new lithography techniques are being considered, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print 45 nm node (and beyond) feature widths and pitches. In a previous paper [1], we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in ISMIs CD-SEM Unified Specification [2]. A model for resist shrinkage, while derived elsewhere [3], was presented, that can be used to curve-fit to the shrinkage data resulting from multiple repeated measurements of resist features. Parameters in the curve-fit allow for metrics quantifying total shrinkage, shrinkage rate, and initial critical dimension (CD) from before e-beam exposure. The ability to know this original CD is the most desirable result; in this work, the ability to use extrapolation to solve for a given original CD value was also experimentally validated by CD-atomic force microscope (AFM) reference metrology. Historically, many different conflicting shrinkage results have been obtained among the many works generated through the litho-metrology community. This work, backed up by an exhaustive dataset, will present an explanation that makes sense of these apparent discrepancies. Past models for resist shrinkage inherently assumed that the photoresist line is wider than the region of the photoresist to be shrunk [3], or, in other words, the e-beam never penetrates enough to reach all material in the interior of a feature; consequently, not all photoresist is affected by the shrinkage process. In actuality, there are two shrinkage regimes, which are dependent on resist feature CD or thickness. Past shrinkage models are true for larger features. However, our results show that when linewidth becomes less than the eventual penetration depth of the e-beam after full shrinkage, the apparent shrinkage magnitude decreases while shrinkage speed accelerates. Thus, for small features, most shrinkage occurs within the first measurement. This is crucial when considering the small features to be fabricated by immersion lithography. In this work, the results from the previous paper [1] will be shown to be consistent with numerically simulated results, thus lending credibility to the postulations in [1]. With these findings, we can conclude with observations about the readiness of SEM metrology for the challenges of both dry and immersion ArF lithographies as well as estimate the errors involved in calculating the original CD from the shrinkage trend.


Nano Letters | 2017

Single Crystal, Luminescent Carbon Nitride Nanosheets Formed by Spontaneous Dissolution

Thomas S. Miller; Theo Suter; Andrew M. Telford; Loren Picco; Oliver D Payton; Freddie Russell-Pavier; Patrick L. Cullen; Andrea Sella; Milo S. P. Shaffer; Jenny Nelson; Vasiliki Tileli; Paul F. McMillan; Christopher A. Howard

A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order. Here, we demonstrate that these semiconductors are spontaneously soluble in select polar aprotic solvents, that is, without any chemical or physical intervention. In contrast to more aggressive exfoliation strategies, this thermodynamically driven dissolution process perfectly maintains the crystallographic form of the starting material, yielding solutions of defect-free, hexagonal 2D nanosheets with a well-defined size distribution. This pristine nanosheet structure results in narrow, excitation-wavelength-independent photoluminescence emission spectra. Furthermore, by controlling the aggregation state of the nanosheets, we demonstrate that the emission wavelengths can be tuned from narrow UV to broad-band white. This has potential applicability to a range of optoelectronic devices.


Journal of Applied Physics | 2009

Noise characteristics of the gas ionization cascade used in low vacuum scanning electron microscopy

Vasiliki Tileli; W. Ralph Knowles; Milos Toth; Bradley L. Thiel

The noise characteristics of gas cascade amplified electron signals in low vacuum scanning electron microscopy (LVSEM) are described and analyzed. We derive expressions for each component contributing to the total noise culminating in a predictive, quantitative model that can be used for optimization of LVSEM operating parameters. Signal and noise behavior is characterized experimentally and used to validate the model. Under most operating conditions, the noise is dominated by the excess noise generated in the gas amplification cascade. At high gains, the excess noise increases proportionally with gain such that the signal-to-noise ratio is constant. The effects of several instrument operating parameters, including working distance, gas pressure, beam current, and detector bias, are condensed and presented in the form of a master curve.


Nano Letters | 2017

Geometrical Effect in 2D Nanopores

Ke Liu; Martina Lihter; Aditya Sarathy; Sabina Caneva; Hu Qiu; Davide Deiana; Vasiliki Tileli; Duncan T. L. Alexander; Stephan Hofmann; Dumitru Dumcenco; Andras Kis; Jean Pierre Leburton; Aleksandra Radenovic

A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. We observe a striking geometry-dependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.


Scientific Reports | 2016

Growth of Epitaxial Oxide Thin Films on Graphene.

Bin Zou; Clementine Walker; Kai Wang; Vasiliki Tileli; Olena Shaforost; N. M. Harrison; N. Klein; Neil McN. Alford; Peter K. Petrov

The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridge-pillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices.


Microscopy and Microanalysis | 2006

Low Voltage and Low Vacuum-When worlds Collide

Brad Thiel; Vasiliki Tileli

Reference EPFL-ARTICLE-218171 URL: http://journals.cambridge.org/abstract_S1431927606069698 Record created on 2016-04-22, modified on 2016-08-09


Microscopy and Microanalysis | 2013

An Assessment of the Origin of Contrast in Off-Axis Electron Holographic Imaging of BaTiO3 Ferroelectric Domains

Vasiliki Tileli; David Neil Cooper; Rafal E. Dunin-Borkowski

Reference EPFL-ARTICLE-218172 URL: http://journals.cambridge.org/abstract_S1431927613008842 Record created on 2016-04-22, modified on 2017-05-10

Collaboration


Dive into the Vasiliki Tileli's collaboration.

Top Co-Authors

Avatar

Simon Perraud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge