Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasilios Tsarouhas is active.

Publication


Featured researches published by Vasilios Tsarouhas.


Current Biology | 2006

Septate-Junction-Dependent Luminal Deposition of Chitin Deacetylases Restricts Tube Elongation in the Drosophila Trachea

Shenqiu Wang; Satish Arcot Jayaram; Johanna Hemphälä; Kirsten-André Senti; Vasilios Tsarouhas; Haining Jin; Christos Samakovlis

The function of tubular epithelial organs like the kidney and lung is critically dependent on the length and diameter of their constituting branches. Genetic analysis of tube size control during Drosophila tracheal development has revealed that epithelial septate junction (SJ) components and the dynamic chitinous luminal matrix coordinate tube growth. However, the underlying molecular mechanisms controlling tube expansion so far remained elusive. Here, we present the analysis of two luminal chitin binding proteins with predicted polysaccharide deacetylase activities (ChLDs). ChLDs are required to assemble the cable-like extracellular matrix (ECM) and restrict tracheal tube elongation. Overexpression of native, but not of mutated, ChLD versions also interferes with the structural integrity of the intraluminal ECM and causes aberrant tube elongation. Whereas ChLD mutants have normal SJ structure and function, the luminal deposition of the ChLD requires intact cellular SJs. This identifies a new molecular function for SJs in the apical secretion of ChLD and positions ChLD downstream of the SJs in tube length control. The deposition of the chitin luminal matrix first promotes and coordinates radial tube expansion. We propose that the subsequent structural modification of chitin by chitin binding deacetylases selectively instructs the termination of tube elongation to the underlying epithelium.


Nature Cell Biology | 2009

The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila

Shenqiu Wang; Vasilios Tsarouhas; Nikos Xylourgidis; Nafiseh Sabri; Katarína Tiklová; Naumi Nautiyal; Marco Gallio; Christos Samakovlis

Epidermal injury initiates a cascade of inflammation, epithelial remodelling and integument repair at wound sites. The regeneration of the extracellular barrier and damaged tissue repair rely on the precise orchestration of epithelial responses triggered by the injury. Grainy head (Grh) transcription factors induce gene expression to crosslink the extracellular barrier in wounded flies and mice. However, the activation mechanisms and functions of Grh factors in re-epithelialization remain unknown. Here we identify stitcher (stit), a new Grh target in Drosophila melanogaster. stit encodes a Ret-family receptor tyrosine kinase required for efficient epidermal wound healing. Live imaging analysis reveals that Stit promotes actin cable assembly during wound re-epithelialization. Stit activation also induces extracellular signal-regulated kinase (ERK) phosphorylation along with the Grh-dependent expression of stit and barrier repair genes at the wound sites. The transcriptional stimulation of stit on injury triggers a positive feedback loop increasing the magnitude of epithelial responses. Thus, Stit activation upon wounding coordinates cytoskeletal rearrangements and the level of Grh-mediated transcriptional wound responses.


PLOS ONE | 2008

COPI Vesicle Transport Is a Common Requirement for Tube Expansion in Drosophila

Satish Arcot Jayaram; Kirsten-André Senti; Katarína Tiklová; Vasilios Tsarouhas; Johanna Hemphälä; Christos Samakovlis

Background Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation. In the trachea, COPII anterograde transport of luminal proteins is required for extracellular matrix assembly and the concurrent tube expansion. Principal Findings We identified and analyzed Drosophila COPI retrograde transport mutants with narrow tracheal tubes. γCOP mutants fail to efficiently secrete luminal components and assemble the luminal chitinous matrix during tracheal tube expansion. Likewise, tube extension is defective in salivary glands, where it also coincides with a failure in the luminal deposition and assembly of a distinct, transient intraluminal matrix. Drosophila γCOP colocalizes with cis-Golgi markers and in γCOP mutant embryos the ER and Golgi structures are severely disrupted. Analysis of γCOP and Sar1 double mutants suggests that bidirectional ER-Golgi traffic maintains the ER and Golgi compartments and is required for secretion and assembly of luminal matrixes during tube expansion. Conclusions/Significance Our results demonstrate the function of COPI components in organ morphogenesis and highlight the common role of apical secretion and assembly of transient organotypic matrices in tube expansion. Intraluminal matrices have been detected in the notochord of ascidians and zebrafish COPI mutants show defects in notochord expansion. Thus, the programmed deposition and growth of distinct luminal molds may provide distending forces during tube expansion in diverse organs.


Journal of Cell Science | 2006

The nucleoporin Nup214 sequesters CRM1 at the nuclear rim and modulates NFκB activation in Drosophila

Nikos Xylourgidis; Peggy Roth; Nafiseh Sabri; Vasilios Tsarouhas; Christos Samakovlis

CRM1-mediated protein export is an important determinant of the nuclear accumulation of many gene regulators. Here, we show that the NFκB transcription factor Dorsal is a substrate of CRM1 and requires the nucleoporin Nup214 for its nuclear translocation upon signaling. Nup214 bound to CRM1 directly and anchored it to the nuclear envelope. In nup214 mutants CRM1 accumulated in the nucleus and NES-protein export was enhanced. Nup214 formed complexes with Nup88 and CRM1 in vivo and Nup214 protected Nup88 from degradation at the nuclear rim. In turn, Nup88 was sufficient for targeting the complex to the nuclear pores. Overexpression experiments indicated that Nup214 alone attracts a fraction of CRM1 to the nuclear envelope but does not interfere with NES-GFP export. By contrast, overexpression of the Nup214-Nup88 complex trapped CRM1 and Dorsal to cytoplasmic foci and inhibited protein export and immune response activation. We hypothesize that variation in levels of the Nup214-Nup88 complex at the pore changes the amount of NPC-bound CRM1 and influences the relative strength and duration of NFκB signaling responses.


Theoretical and Applied Genetics | 2004

Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix

Vasilios Tsarouhas; Urban Gullberg; Ulf Lagercrantz

Quantitative trait locus (QTL) analysis was performed at different time points during cold-acclimation of a tetraploid F2 Salix pedigree. The pedigree (n=92) was derived from a cross between a frost-susceptible diploid female clone ‘Jorunn’ (Salix viminalis) and a frost resistant hexaploid male clone ‘SW901290’ (Salix dasyclados). Freezing resistance, height growth increment and number of new leaves were assessed at days 0, 12, 20, 24, 31 and 42 of a short day–low temperature (SD-LT) hardening regime, while the initiation of shoot tip abscission and shoot tip abscission were measured daily. Height increment, dry-to-fresh weight ratio and number of new leaves were also measured in a replicated field trial. Freezing resistance was determined from electrolyte leakage of leaf tissues and from visual injuries on stem segments, after exposure to a predetermined freeze-thaw stress. Using a genetic map of the F2 composed of 432 single-dose AFLP markers, a total of 19 genomic regions controlling freezing resistance (10) and phenological traits (9) before and during cold-acclimation (SD-LT) were identified. The magnitude of the phenotypic variation explained by each freezing resistance locus varied over acclimation time (0–45%), and there was no time point at which all the QTLs could be detected. The single QTL detected for non-acclimated freezing resistance did not reach significance at any time point during cold-acclimation, suggesting an independent genetic relationship between non-acclimated and acclimated resistance to freezing in Salix. Five of the loci associated with freezing resistance shared common intervals with loci controlling phenological traits. Of the 14 QTLs controlling autumn freezing resistance and/or phenological traits in the indoors experiment, six (43%) were associated with autumn phenology-related traits, i.e. height increment, dry-to-fresh weight ratio and number of new leaves, measured in the field. A major locus with multi-trait association in both indoor and outdoor experiments was detected.


PLOS ONE | 2013

Control of Airway Tube Diameter and Integrity by Secreted Chitin-Binding Proteins in Drosophila

Katarína Tiklová; Vasilios Tsarouhas; Christos Samakovlis

The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion.


Journal of Applied Genetics | 2008

Resistance to Melampsora larici-epitea leaf rust in Salix: analyses of quantitative trait loci.

Ann-Christin Rönnberg-Wästljung; Berit Samils; Vasilios Tsarouhas; Urban Gullberg

Quantitative resistance ofSalix toMelampsora larici-epitea leaf rust was studied in 2Salix mapping populations. One population was a backcross between aS. schwerinii ×S. viminalis hybrid andS. viminalis, and the other was an F2 population betweenS. viminalis andS. dasyclados. A leaf disc bioassay was used to study the components of quantitative resistance (latent period, uredinia number, and uredinia size) to 3 isolates of the leaf rust. The analysis of quantitative trait loci (QTLs) revealed 9 genomic regions in the backcross population and 7 genomic regions in the F2 population that were important for rust resistance, with QTLs explaining 8–26% of the phenotypic variation. An important genomic region was identified for the backcross population in linkage group 2, where QTLs were identified for all resistance components for 2 of the rust isolates. Four of the QTLs had overlapping mapping intervals, demonstrating a common genetic background for latent period, uredinia diameter, and uredinia number. QTLs specific to some rust isolates and to some resistance components were also found, indicating a combination of common and specific mechanisms involved in the various resistance components. Breeding implications in relation to these findings are discussed.


Journal of Cell Science | 2014

Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila.

Vasilios Tsarouhas; Liqun Yao; Christos Samakovlis

ABSTRACT Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.


Biology Open | 2016

Early development of Drosophila embryos requires Smc5/6 function during oogenesis.

Martin Tran; Vasilios Tsarouhas; Andreas Kegel

ABSTRACT Mutations in structural maintenance of chromosomes (Smc) proteins are frequently associated with chromosomal abnormalities commonly observed in developmental disorders. However, the role of Smc proteins in development still remains elusive. To investigate Smc5/6 function during early embryogenesis we examined smc5 and smc6 mutants of the fruit fly Drosophila melanogaster using a combination of reverse genetics and microscopy approaches. Smc5/6 exhibited a maternally contributed function in maintaining chromosome stability during early embryo development, which manifested as female subfertility in its absence. Loss of Smc5/6 caused an arrest and a considerable delay in embryo development accompanied by fragmented nuclei and increased anaphase-bridge formation, respectively. Surprisingly, early embryonic arrest was attributable to the absence of Smc5/6 during oogenesis, which resulted in insufficient repair of pre-meiotic and meiotic DNA double-strand breaks. Thus, our findings contribute to the understanding of Smc proteins in higher eukaryotic development by highlighting a maternal function in chromosome maintenance and a link between oogenesis and early embryogenesis. Summary: Early emerging problems during oogenesis, such as DNA double-strand breaks, can affect chromosome duplication and segregation in embryogenesis in Drosophila. Moreover, environmental cues including temperature are important for proper oogenesis.


Journal of Cell Science | 2017

Meeting report – Cellular dynamics: membrane–cytoskeleton interface

Joshua N. Bembenek; Xenia Meshik; Vasilios Tsarouhas

ABSTRACT The first ever ‘Cellular Dynamics’ meeting on the membrane–cytoskeleton interface took place in Southbridge, MA on May 21-24, 2017 and was co-organized by Michael Way, Elizabeth Chen, Margaret Gardel and Jennifer Lippincott-Schwarz. Investigators from around the world studying a broad range of related topics shared their insights into the function and regulation of the cytoskeleton and membrane compartments. This provided great opportunities to learn about key questions in various cellular processes, from the basic organization and operation of the cell to higher-order interactions in adhesion, migration, metastasis, division and immune cell interactions in different model organisms. This unique and diverse mix of research interests created a stimulating and educational meeting that will hopefully continue to be a successful meeting for years to come.

Collaboration


Dive into the Vasilios Tsarouhas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urban Gullberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Nikos Xylourgidis

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann-Christin Rönnberg-Wästljung

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge