Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasilis Katopodis is active.

Publication


Featured researches published by Vasilis Katopodis.


Optics Express | 2012

Serial 100 Gb/s connectivity based on polymer photonics and InP-DHBT electronics.

Vasilis Katopodis; Christos Kouloumentas; Agnieszka Konczykowska; Filipe Jorge; Panos Groumas; Ziyang Zhang; Antonio Beretta; Alberto Dede; Jean-Yves Dupuy; Virginie Nodjiadjim; Giulio Cangini; George Von Büren; Eric L. Miller; Raluca Dinu; Jung Han Choi; Detlef Pech; Norbert Keil; Heinz-Gunter Bach; Norbert Grote; Antonello Vannucci; Hercules Avramopoulos

We demonstrate the first integrated transmitter for serial 100 Gb/s NRZ-OOK modulation in datacom and telecom applications. The transmitter relies on the use of an electro-optic polymer modulator and the hybrid integration of an InP laser diode and InP-DHBT electronics with the polymer board. Evaluation is made at 80 and 100 Gb/s through eye-diagrams and BER measurements using a receiver module that integrates a pin-photodiode and an electrical 1:2 demultiplexer. Error-free performance is confirmed both at 80 and 100 Gb/s revealing the viability of the approach and the potential of the technology.


IEEE Photonics Technology Letters | 2012

All-Optical RZ-to-NRZ Conversion of Advanced Modulated Signals

Panos Groumas; Vasilis Katopodis; Christos Kouloumentas; Marios Bougioukos; Hercules Avramopoulos

A generic scheme for return-to-zero (RZ) to nonreturn-to-zero (NRZ) format conversion of optical signals is analyzed. It relies on a simple delay interferometer with frequency periodicity twice as high as the input symbol rate and a subsequent optical band-pass filter. Simulation results at 40 Gbaud indicate the compatibility of the technique with a variety of advanced modulation formats. RZ-to-NRZ conversion of 40 Gb/s differential phase shift keying signals is experimentally demonstrated with 1.5 dB power penalty compared to the back-to-back measurement.


Optics Letters | 2012

Complex monolithic and InP hybrid integration on high bandwidth electro-optic polymer platform.

Panos Groumas; Ziyang Zhang; Vasilis Katopodis; Ch. Kouloumentas; D. de Felipe; Raluca Dinu; Eric L. Miller; Jonathan Mallari; Giulio Cangini; Norbert Keil; Hercules Avramopoulos; Norbert Grote

We report on the monolithic integration of multimode interference couplers, Bragg gratings, and delay-line interferometers on an electro-optic polymer platform capable of modulation directly at 100 Gb/s. We also report on the hybrid integration of InP active components with the polymer structure using the butt-coupling technique. Combining the passive and the active components, we demonstrate a polymer-based, external cavity laser with 17 nm tuning range and the optical assembly of an integrated 100 Gb/s transmitter, and we reveal the potential of the electro-optic polymer technology to provide the next generation integration platform for complex, ultra-high-speed optical transceivers.


Journal of Lightwave Technology | 2015

Multi-100 GbE and 400 GbE Interfaces for Intra-Data Center Networks Based on Arrayed Transceivers With Serial 100 Gb/s Operation

Panos Groumas; Vasilis Katopodis; Jung Han Choi; Heinz-Gunter Bach; Jean-Yves Dupuy; Agnieszka Konczykowska; Ziyang Zhang; Parisa Harati; Eric L. Miller; Antonio Beretta; Lefteris Gounaridis; Filipe Jorge; Virginie Nodjiadjim; Alberto Dede; Antonello Vannucci; Giulio Cangini; Raluca Dinu; Norbert Keil; Norbert Grote; Hercules Avramopoulos; Christos Kouloumentas

We demonstrate a 2 × 100 Gb/s transmitter and a 4 × 100 Gb/s receiver as the key components for multi-100-GbE and 400-GbE optical interfaces in future intradata center networks. Compared to other approaches, the two devices can provide significant advantages in terms of number of components, simplicity, footprint, and cost, as they are capable of serial operation with nonreturn-to-zero on-off keying format directly at 100 Gb/s. The transmitter is based on the monolithic integration of a multimode interference coupler with two Mach-Zehnder modulators on an electro-optic polymer chip, and the hybrid integration of this chip with an InP laser diode and two multiplexing and driving circuits. The receiver on the other hand is based on the hybrid integration of a quad array of InP photodiodes with two demultiplexing circuits. Combining the two devices, we evaluate their transmission performance over standard single-mode fibers without dispersion compensation and achieve a BER of 10-10 after 1000 m and a BER below 10-8 after 1625 m at 2 × 80 Gb/s, as well as a BER below 10-7 after 1000 m at 2 × 100 Gb/s. Future plans including the development of tunable 100 GbE interfaces for optical circuit-switched domains inside data center networks are also discussed.


IEEE Photonics Technology Letters | 2014

\(2 \times 100\) -Gb/s NRZ-OOK Integrated Transmitter for Intradata Center Connectivity

Vasilis Katopodis; Panos Groumas; Ziyang Zhang; Jean-Yves Dupuy; Eric L. Miller; Antonio Beretta; Lefteris Gounaridis; Jung Han Choi; Detlef Pech; Filipe Jorge; Virginie Nodjiadjim; Raluca Dinu; Giulio Cangini; Alberto Dede; Antonello Vannucci; Agnieszka Konczykowska; Norbert Keil; Heinz-Gunter Bach; Norbert Grote; Christos Kouloumentas; Hercules Avramopoulos

We demonstrate an integrated transmitter that can generate two 100-Gb/s optical channels with simple nonreturn-to-zero-ON-OFF keying format. The transmitter is based on the combination of an ultrafast electro-optic polymer platform for the photonic integration and the optical modulation with ultrafast InP-double heterojunction bipolar transistor electronics for the multiplexing and the amplification of the 100-Gb/s driving signals. Through error-free transmission of 2 × 80-Gb/s signals over 1 km of SMF and transmission of 2 × 100-Gb/s signals over 500 m of single-mode fiber with error performance way below the forward error correction limit, we reveal the potential of the approach for parallel 100-GbE optical interfaces in small footprint transceivers for intradata center networks.


Journal of Lightwave Technology | 2016

Tunable 100 Gbaud Transmitter Based on Hybrid Polymer-to-Polymer Integration for Flexible Optical Interconnects

Panos Groumas; Ziyang Zhang; Vasilis Katopodis; Agnieszka Konczykowska; Jean-Yves Dupuy; Antonio Beretta; Alberto Dede; Jung Han Choi; Parisa Harati; Filipe Jorge; Virginie Nodjiadjim; M. Riet; Raluca Dinu; Giulio Cangini; Eric L. Miller; Antonello Vannucci; Norbert Keil; H.-G. Bach; Norbert Grote; Maria Spyropoulou; Hercules Avramopoulos; Ch. Kouloumentas

We introduce a hybrid integration platform based on the combination of passive and electro-optic polymers. We analyze the optical and physical compatibility of these materials and describe the advantages that our hybrid platform is expected to have for the development of transmitters in terms of operation flexibility and speed. We combine our platform with InP electronics and develop a transmitter with 22-nm tunability in the C-band and potential for serial non-return-to-zero on-off-keying operation directly at 100 Gb/s. We investigate its transmission performance at 80 and 100 Gb/s using dispersion uncompensated standard single-mode fiber and demonstrate bit-error rate (BER) lower than 10-10 at 80 Gb/s after 1625 m, lower than 10-10 at 100 Gb/s after 500 m, lower than 10-9 at 100 Gb/s after 1000 m, and BER 10-7 at the same rate after 1625 m. We also employ the transmitter inside an experimental setup, which aims to emulate an optical circuit switched (OCS) domain of an intradata center network, and demonstrate at 100 Gb/s the way, in which its wavelength tunability can resolve contentions and improve the flexibility and the efficiency of the network. Finally, we outline our next plans, including the development of flexible and ultra-fast transmitters for coherent systems using the same polymer-to-polymer integration platform.


IEEE Photonics Technology Letters | 2016

Multi-Flow Transmitter Based on Polarization and Optical Carrier Management on Optical Polymers

Vasilis Katopodis; D. de Felipe; C. Tsokos; Panos Groumas; Maria Spyropoulou; Antonio Beretta; Alberto Dede; Marco Quagliotti; A. Pagano; Antonello Vannucci; Norbert Keil; Hercules Avramopoulos; Ch. Kouloumentas

We propose a novel multi-flow transmitter concept capable of controlling the number, type, wavelength, and destination of the generated optical flows depending on the client traffic. The concept is based on the selection of the number of optical carriers per flow and the selection between single- and dual-polarization flows. We demonstrate the proof-of-concept combining two commercial In-Phase/Quadrature (IQ) modulators with two prototype polymer circuits, which integrate three tunable lasers for flexible wavelength allocation, four thermo-optic switches for flexible optical routing on-chip, and elements for polarization handling on-chip. We incorporate this transmitter inside an optical node, and we investigate one-flow scenarios with dual-carrier or dual-polarization quadrature phase shift keying (QPSK) modulation, and two-flow scenarios based on two independent QPSK signals. The transmitter and node configuration are controlled by a software-defined optics platform. We demonstrate dynamic operation at 28 GBd and error-free coherent transmission over 100 km of the standard single-mode fiber.


Proceedings of SPIE | 2015

Passive and electro-optic polymer photonics and InP electronics integration

Ziyang Zhang; Vasilis Katopodis; Panos Groumas; Agnieszka Konczykowska; Jean-Yves Dupuy; Antonio Beretta; Alberto Dede; Eric L. Miller; Jung Han Choi; Parisa Harati; Filipe Jorge; Virginie Nodjiadjim; Raluca Dinu; Giulio Cangini; Antonello Vannucci; D. de Felipe; A. Maese-Novo; Norbert Keil; H.-G. Bach; Martin Schell; Hercules Avramopoulos; Ch. Kouloumentas

Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.


IEEE Photonics Technology Letters | 2012

Experimental Demonstration of an Elastic Packet Routing Node Based on OCDMA Label Coding

Houssem Brahmi; Giannis Giannoulis; Mourad Menif; Vasilis Katopodis; Dimitrios Kalavrouziotis; Christos Stamatiadis; Christos Kouloumentas; Hercules Avramopoulos; Didier Erasme

We propose and demonstrate experimentally an all-optical packet routing scheme using hybrid-wavelength-division multiplexing/optical-code-division multiple access labeling for 40-Gb/s nonreturn-to-zero (NRZ) data. With no electronic control, the system forwards asynchronously packets delimited by valid label and suppresses unwanted traffic. It consists of an optical flip-flop controlled by two correlators combined with a Mach-Zehnder interferometer that selects packets for each fiber output. The experimental results show optical switching operation for the optical-code gate with an extinction ratio of 16 dB between the switched and unswitched packets and a switching time below 2 ns. Error-free operation has been successfully achieved with low-power penalty for 40-Gb/s NRZ data.


international conference on transparent optical networks | 2014

Passive and electro-optic polymer photonics and InP electronics integration for multi-flow terabit transceivers at edge SDN switches and data-center gateways

Hercules Avramopoulos; Vasilis Katopodis; Panos Groumas; L. Gounaridis; A. Konczykowska; Z. Zhang; G. de Valicourt; R. Dinu; A. Vannucci; Tom Keinicke Johansen; A. Pagano; Christos Kouloumentas

Within PANTHER research project, we aim to develop multi-rate, multi-format, multi-reach and multi-flow terabit transceivers for data-center gateways, having the capability of flexibly controlling this enormous capacity and distributing it among independent optical flows. To this end, we combine electro-optic with passive polymers and we develop a novel photonic integration platform with unprecedented potential for high-speed modulation and optical functionality on-chip. We also rely on the combination of polymers with InP elements and the use of InP-DHBT electronics for driving circuits based on 3-bit power-DACs and high-speed TIA arrays. Using 3D integration techniques, we also aim to integrate these components in system-in-package transceivers capable of operation at 64 Gbaud, operation with formats up to DP-64-QAM and flexibility in the handling of multiple optical flows on-chip. In this paper, we present the system level vision and the technical approach for the development of these modules, and we present the concept for a thin software layer that will control the parameters of the transceivers and will extend the SDN hierarchy down to the flexible optical transport layer.

Collaboration


Dive into the Vasilis Katopodis's collaboration.

Top Co-Authors

Avatar

Hercules Avramopoulos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Panos Groumas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Christos Kouloumentas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ch. Kouloumentas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Tsokos

National Technical University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge