Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasily A. Vakorin is active.

Publication


Featured researches published by Vasily A. Vakorin.


The Journal of Neuroscience | 2011

Variability of Brain Signals Processed Locally Transforms into Higher Connectivity with Brain Development

Vasily A. Vakorin; Sarah Lippé; Anthony R. McIntosh

A number of studies have characterized the changes in variability of brain signals with brain maturation from the perspective of considering the human brain as a complex system. Specifically, it has been shown that complexity of brain signals increases in development. On one hand, such an increase in complexity can be attributed to more specialized and differentiated brain regions able to express a higher repertoire of mental microstates. On the other hand, it can be explained by increased integration between widely distributed neuronal populations and establishment of new connections. The goal of this study was to see which of these two mechanisms is dominant, accounting for the previously observed increase in signal complexity. Using information-theoretic tools based on scalp-recorded EEG measurements, we examined the trade-off between local and distributed variability of brain signals in infants and children separated into age groups of 1–2, 2–8, 9–24, and 24–66 months old. We found that developmental changes were characterized by a decrease in the amount of information processed locally, with a peak in alpha frequency range. This effect was accompanied by an increase in the variability of brain signals processed as a distributed network. Complementary analysis of phase locking revealed an age-related pattern of increased synchronization in the lower part of the spectrum, up to the alpha rhythms. At the same time, we observed the desynchronization effects associated with brain development in the higher beta to lower gamma range.


Journal of Neuroscience Methods | 2009

Confounding effects of indirect connections on causality estimation

Vasily A. Vakorin; Olga Krakovska; Anthony R. McIntosh

Addressing the issue of effective connectivity, this study focuses on effects of indirect connections on inferring stable causal relations: partial transfer entropy. We introduce a Granger causality measure based on a multivariate version of transfer entropy. The statistic takes into account the influence of the rest of the network (environment) on observed coupling between two given nodes. This formalism allows us to quantify, for a specific pathway, the total amount of indirect coupling mediated by the environment. We show that partial transfer entropy is a more sensitive technique to identify robust causal relations than its bivariate equivalent. In addition, we demonstrate the confounding effects of the variation in indirect coupling on the detectability of robust causal links. Finally, we consider the problem of model misspecification and its effect on the robustness of the observed connectivity patterns, showing that misspecifying the model may be an issue even for model-free information-theoretic approach.


Frontiers in Systems Neuroscience | 2011

Functional Embedding Predicts the Variability of Neural Activity

Bratislav Misic; Vasily A. Vakorin; Tomáš Paus; Anthony R. McIntosh

Neural activity is irregular and unpredictable, yet little is known about why this is the case and how this property relates to the functional architecture of the brain. Here we show that the variability of a region’s activity systematically varies according to its topological role in functional networks. We recorded the resting-state electroencephalogram (EEG) and constructed undirected graphs of functional networks. We measured the centrality of each node in terms of the number of connections it makes (degree), the ease with which the node can be reached from other nodes in the network (efficiency) and the tendency of the node to occupy a position on the shortest paths between other pairs of nodes in the network (betweenness). As a proxy for variability, we estimated the information content of neural activity using multiscale entropy analysis. We found that the rate at which information was generated was largely predicted by centrality. Namely, nodes with greater degree, betweenness, and efficiency were more likely to have high information content, while peripheral nodes had relatively low information content. These results suggest that the variability of regional activity reflects functional embedding.


NeuroImage | 2010

Exploring transient transfer entropy based on a group-wise ICA decomposition of EEG data.

Vasily A. Vakorin; Natasa Kovacevic; Anthony R. McIntosh

This paper presents a data-driven pipeline for studying asymmetries in mutual interdependencies between distinct components of EEG signal. Due to volume conductance, estimating coherence between scalp electrodes may lead to spurious results. A group-based independent component analysis (ICA), which is conducted across all subjects and conditions simultaneously, is an alternative representation of the EEG measurements. Within this approach, the extracted components are independent in a global sense while short-lived or transient interdependencies may still be present between the components. In this paper, functional roles of the ICA components are specified through a partial least squares (PLS) analysis of task effects within the time course of the derived components. Functional integration is estimated within the information-theoretic approach using transfer entropy analysis based on asymmetries in mutual interdependencies of reconstructed phase dynamics. A secondary PLS analysis is performed to assess robust task-specific changes in transfer entropy estimates between functionally specific components.


NeuroImage | 2012

Hundreds of brain maps in one atlas: Registering coordinate-independent primate neuro-anatomical data to a standard brain

Gleb Bezgin; Vasily A. Vakorin; A. John Van Opstal; Anthony R. McIntosh; Rembrandt Bakker

Non-invasive measuring methods such as EEG/MEG, fMRI and DTI are increasingly utilised to extract quantitative information on functional and anatomical connectivity in the human brain. These methods typically register their data in Euclidean space, so that one can refer to a particular activity pattern by specifying its spatial coordinates. Since each of these methods has limited resolution in either the time or spatial domain, incorporating additional data, such as those obtained from invasive animal studies, would be highly beneficial to link structure and function. Here we describe an approach to spatially register all cortical brain regions from the macaque structural connectivity database CoCoMac, which contains the combined tracing study results from 459 publications (http://cocomac.g-node.org). Brain regions from 9 different brain maps were directly mapped to a standard macaque cortex using the tool Caret (Van Essen and Dierker, 2007). The remaining regions in the CoCoMac database were semantically linked to these 9 maps using previously developed algebraic and machine-learning techniques (Bezgin et al., 2008; Stephan et al., 2000). We analysed neural connectivity using several graph-theoretical measures to capture global properties of the derived network, and found that Markov Centrality provides the most direct link between structure and function. With this registration approach, users can query the CoCoMac database by specifying spatial coordinates. Availability of deformation tools and homology evidence then allow one to directly attribute detailed anatomical animal data to human experimental results.


Frontiers in Systems Neuroscience | 2011

Empirical and Theoretical Aspects of Generation and Transfer of Information in a Neuromagnetic Source Network

Vasily A. Vakorin; Bratislav Misic; Olga Krakovska; Anthony R. McIntosh

Variability in source dynamics across the sources in an activated network may be indicative of how the information is processed within a network. Information-theoretic tools allow one not only to characterize local brain dynamics but also to describe interactions between distributed brain activity. This study follows such a framework and explores the relations between signal variability and asymmetry in mutual interdependencies in a data-driven pipeline of non-linear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected as a reaction to a face recognition task. Asymmetry in non-linear interdependencies in the network was analyzed using transfer entropy, which quantifies predictive information transfer between the sources. Variability of the source activity was estimated using multi-scale entropy, quantifying the rate of which information is generated. The empirical results are supported by an analysis of synthetic data based on the dynamics of coupled systems with time delay in coupling. We found that the amount of information transferred from one source to another was correlated with the difference in variability between the dynamics of these two sources, with the directionality of net information transfer depending on the time scale at which the sample entropy was computed. The results based on synthetic data suggest that both time delay and strength of coupling can contribute to the relations between variability of brain signals and information transfer between them. Our findings support the previous attempts to characterize functional organization of the activated brain, based on a combination of non-linear dynamics and temporal features of brain connectivity, such as time delay.


NeuroImage | 2014

Does resting-state connectivity reflect depressive rumination? A tale of two analyses

Marc G. Berman; Bratislav Misic; Martin Buschkuehl; Ethan Kross; Patricia J. Deldin; Scott Peltier; Nathan W. Churchill; Susanne M. Jaeggi; Vasily A. Vakorin; Anthony R. McIntosh; John Jonides

Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms.


NeuroImage | 2010

Complexity analysis of source activity underlying the neuromagnetic somatosensory steady-state response

Vasily A. Vakorin; Bernhard Ross; Olga Krakovska; Timothy Bardouille; Douglas Cheyne; Anthony R. McIntosh

Using the notion of complexity and synchrony, this study presents a data-driven pipeline of nonlinear analysis of neuromagnetic sources reconstructed from human magnetoencephalographic (MEG) data collected in reaction to vibrostimulation of the right index finger. The dynamics of MEG source activity was reconstructed with synthetic aperture magnetometry (SAM) beam-forming technique. Considering brain as a complex system, we applied complexity-based tools to identify brain areas with dynamic patterns that remain regular across repeated stimulus presentations, and to characterize their synchronized behavior. Volumetric maps of brain activation were calculated using sample entropy as a measure of signal complexity. The complexity analysis identified activity in the primary somatosensory (SI) area contralateral to stimuli and bilaterally in the posterior parietal cortex (PPC) as regions with decreased complexity, consistently expressed in a group of subjects. Seeding an activated source with low complexity in the SI area, cross-sample entropy was used to generate synchrony maps. Cross-sample entropy analysis confirmed the synchronized dynamics of neuromagnetic activity between areas SI and PPC, robustly expressed across subjects. Our results extend the understanding of synchronization between co-activated brain regions, focusing on temporal coordination between events in terms of synchronized multidimensional signal patterns.


Cerebral Cortex | 2015

Coordinated Information Generation and Mental Flexibility: Large-Scale Network Disruption in Children with Autism

Bratislav Misic; Sam M. Doesburg; Zainab Fatima; Julie Vidal; Vasily A. Vakorin; Margot J. Taylor; Anthony R. McIntosh

Autism spectrum disorder (ASD) includes deficits in social cognition, communication, and executive function. Recent neuroimaging studies suggest that ASD disrupts the structural and functional organization of brain networks and, presumably, how they generate information. Here, we relate deficits in an aspect of cognitive control to network-level disturbances in information processing. We recorded magnetoencephalography while children with ASD and typically developing controls performed a set-shifting task designed to test mental flexibility. We used multiscale entropy (MSE) to estimate the rate at which information was generated in a set of sources distributed across the brain. Multivariate partial least-squares analysis revealed 2 distributed networks, operating at fast and slow time scales, that respond completely differently to set shifting in ASD compared with control children, indicating disrupted temporal organization within these networks. Moreover, when typically developing children engaged these networks, they achieved faster reaction times. When children with ASD engaged these networks, there was no improvement in performance, suggesting that the networks were ineffective in children with ASD. Our data demonstrate that the coordination and temporal organization of large-scale neural assemblies during the performance of cognitive control tasks is disrupted in children with ASD, contributing to executive function deficits in this group.


PLOS ONE | 2013

Confounding Effects of Phase Delays on Causality Estimation

Vasily A. Vakorin; Bratislav Misic; Olga Krakovska; Gleb Bezgin; Anthony R. McIntosh

Linear and non-linear techniques for inferring causal relations between the brain signals representing the underlying neuronal systems have become a powerful tool to extract the connectivity patterns in the brain. Typically these tools employ the idea of Granger causality, which is ultimately based on the temporal precedence between the signals. At the same time, phase synchronization between coupled neural ensembles is considered a mechanism implemented in the brain to integrate relevant neuronal ensembles to perform a cognitive or perceptual task. Phase synchronization can be studied by analyzing the effects of phase-locking between the brain signals. However, we should expect that there is no one-to-one mapping between the observed phase lag and the time precedence as specified by physically interacting systems. Specifically, phase lag observed between two signals may interfere with inferring causal relations. This could be of critical importance for the coupled non-linear oscillating systems, with possible time delays in coupling, when classical linear cross-spectrum strategies for solving phase ambiguity are not efficient. To demonstrate this, we used a prototypical model of coupled non-linear systems, and compared three typical pipelines of inferring Granger causality, as established in the literature. Specifically, we compared the performance of the spectral and information-theoretic Granger pipelines as well as standard Granger causality in their relations to the observed phase differences for frequencies at which the signals become synchronized to each other. We found that an information-theoretic approach, which takes into account different time lags between the past of one signal and the future of another signal, was the most robust to phase effects.

Collaboration


Dive into the Vasily A. Vakorin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bratislav Misic

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vitaly V. Bulatov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge