Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vassiliki A. Boussiotis is active.

Publication


Featured researches published by Vassiliki A. Boussiotis.


Nature Immunology | 2001

PD-L2 is a second ligand for PD-1 and inhibits T cell activation.

Yvette Latchman; Clive Wood; Tatyana Chernova; Divya Chaudhary; Madhuri Borde; Irene Chernova; Yoshiko Iwai; Andrew J. Long; Julia Brown; Raquel Nunes; Edward A. Greenfield; Karen Bourque; Vassiliki A. Boussiotis; Laura Carter; Beatriz M. Carreno; Nelly Malenkovich; Hiroyuki Nishimura; Taku Okazaki; Tasuku Honjo; Arlene H. Sharpe; Gordon J. Freeman

Programmed death 1 (PD-1)–deficient mice develop a variety of autoimmune-like diseases, which suggests that this immunoinhibitory receptor plays an important role in tolerance. We identify here PD-1 ligand 2 (PD-L2) as a second ligand for PD-1 and compare the function and expression of PD-L1 and PD-L2. Engagement of PD-1 by PD-L2 dramatically inhibits T cell receptor (TCR)-mediated proliferation and cytokine production by CD4+ T cells. At low antigen concentrations, PD-L2–PD-1 interactions inhibit strong B7-CD28 signals. In contrast, at high antigen concentrations, PD-L2–PD-1 interactions reduce cytokine production but do not inhibit T cell proliferation. PD-L–PD-1 interactions lead to cell cycle arrest in G0/G1 but do not increase cell death. In addition, ligation of PD-1 + TCR leads to rapid phosphorylation of SHP-2, as compared to TCR ligation alone. PD-L expression was up-regulated on antigen-presenting cells by interferon γ treatment and was also present on some normal tissues and tumor cell lines. Taken together, these studies show overlapping functions of PD-L1 and PD-L2 and indicate a key role for the PD-L–PD-1 pathway in regulating T cell responses.


Immunity | 1995

B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4

Gordon J. Freeman; Vassiliki A. Boussiotis; Anukanth Anumanthan; Gregory M. Bernstein; Xiao Yen Ke; Paul D. Rennert; Gary S. Gray; John G. Grlbben; Lee M. Nadler

The functional necessity for two CD28 counterreceptors (B7-1 and B7-2) is presently unknown. B7-1 and B7-2 equivalently costimulate IL-2 and interferon-gamma (IFN gamma) production and IL-2 receptor alpha and gamma chain expression. B7-2 induces significantly more IL-4 production than B7-1, with the greatest difference seen in naive T cells. Repetitive costimulation of CD4+ CD45RA+ T cells with B7-2 results in moderate levels of both IL-4 and IL-2, whereas repetitive costimulation with B7-1 results in high levels of IL-2 and low levels of IL-4. Therefore, B7-1 and B7-2 costimulation mediate distinct outcomes, since B7-2 provides an initial signal to induce naive T cells to become IL-4 producers, thereby directing the immune response more towards Th0/Th2, whereas B7-1 is a more neutral differentiative signal.


Journal of Immunology | 2000

Mouse Inducible Costimulatory Molecule (ICOS) Expression Is Enhanced by CD28 Costimulation and Regulates Differentiation of CD4+ T Cells

Alexander J. McAdam; Tammy T. Chang; Anna E. Lumelsky; Edward A. Greenfield; Vassiliki A. Boussiotis; Jonathan S. Duke-Cohan; Tatyana Chernova; Nelly Malenkovich; Claudia Jabs; Vijay K. Kuchroo; Vincent Ling; Mary Collins; Arlene H. Sharpe; Gordon J. Freeman

The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4+ and CD8+ T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4+ T cells. First, CD4+ cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4+ cells and production of IFN-γ, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4+ T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4+ T cells produced more IFN-γ and less IL-4 and IL-10 than CD4+ cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.


Journal of Clinical Investigation | 2000

IL-10–producing T cells suppress immune responses in anergic tuberculosis patients

Vassiliki A. Boussiotis; Eunice Y. Tsai; Edmond J. Yunis; Sok Thim; Julio Delgado; Christopher C. Dascher; Alla Berezovskaya; Dominique Rousset; Jean-Marc Reynes; Anne E. Goldfeld

The lethality of Mycobacterium tuberculosis remains the highest among infectious organisms and is linked to inadequate immune response of the host. Containment and cure of tuberculosis requires an effective cell-mediated immune response, and the absence, during active tuberculosis infection, of delayed-type hypersensitivity (DTH) responses to mycobacterial antigens, defined as anergy, is associated with poor clinical outcome. To investigate the biochemical events associated with this anergy, we screened 206 patients with pulmonary tuberculosis and identified anergic patients by their lack of dermal reactivity to tuberculin purified protein derivative (PPD). In vitro stimulation of T cells with PPD induced production of IL-10, IFN-gamma, and proliferation in PPD(+) patients, whereas cells from anergic patients produced IL-10 but not IFN-gamma and failed to proliferate in response to this treatment. Moreover, in anergic patients IL-10-producing T cells were constitutively present, and T-cell receptor-mediated (TCR-mediated) stimulation resulted in defective phosphorylation of TCRzeta and defective activation of ZAP-70 and MAPK. These results show that T-cell anergy can be induced by antigen in vivo in the intact human host and provide new insights into mechanisms by which M. tuberculosis escapes immune surveillance.


Immunity | 2001

CTLA-4 Regulates Induction of Anergy In Vivo

Rebecca J. Greenwald; Vassiliki A. Boussiotis; Robert B. Lorsbach; Abul K. Abbas; Arlene H. Sharpe

The requirement for CTLA-4 during the induction of peripheral T cell tolerance in vivo was investigated using naive TCR transgenic T cells lacking CTLA-4. CTLA-4(-/-) T cells are resistant to tolerance induction, as demonstrated by their proliferative responses, IL-2 production, and progression into the cell cycle. Following exposure to a tolerogenic stimulus in vivo and restimulation in vitro, wild-type T cells are blocked at the late G1 to S restriction point of the cell cycle. In contrast, CTLA-4(-/-) T cells enter into the S phase of the cell cycle, as shown by downregulation of p27(kip1), elevated cdk2 kinase activity, and Rb hyperphosphorylation. Thus, CTLA-4 has an essential role in determining the outcome of T cell encounter with a tolerogenic stimulus.


Immunological Reviews | 2003

T cell anergy and costimulation

Leonard Joseph Appleman; Vassiliki A. Boussiotis

Summary:  T lymphocytes play a key role in immunity by distinguishing self from nonself peptide antigens and regulating both the cellular and humoral arms of the immune system. Acquired, antigen‐specific unresponsiveness is an important mechanism by which T cell responses to antigen are regulated in vivo. Clonal anergy is the term that describes T cell unresponsiveness at the cellular level. Anergic T cells do not proliferate or secrete interleukin (IL)‐2 in response to appropriate antigenic stimulation. However, anergic T cells express the IL‐2 receptor, and anergy can be broken by exogenous IL‐2. Anergy can be induced by submitogenic exposure to peptide antigen in the absence of a costimulatory signal provided by soluble cytokines or by interactions between costimulatory receptors on T cells and counter‐receptors on antigen‐presenting cells. The molecular events that mediate the induction and maintenance of T cell anergy are the focus of this review. The molecular consequences of CD28–B7 interaction are discussed as a model for the costimulatory signal that leads to T cell activation rather than the induction of anergy.


Nature Medicine | 2000

P27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes

Vassiliki A. Boussiotis; Gordon J. Freeman; Patricia A. Taylor; Alla Berezovskaya; Isabelle Grass; Bruce R. Blazar; Lee M. Nadler

Although recent in vitro studies have begun to decipher the molecular events that characterize the anergic state, their in vivo biologic relevance and potential clinical importance remain unclear. Here, using anergic human T-cell clones and tolerant alloreactive mouse T cells that do not induce graft-versus-host disease, we show that p27kip1 cyclin-dependent kinase inhibitor is an essential regulator responsible for the blockade of clonal expansion of anergic T cells in vitro and in vivo. Moreover, in anergic cells, p27kip1 associates with the c-Jun co-activator JAB1, resulting in defective transactivation of AP-1 and interleukin 2 transcription. Therefore, pharmacological agents that upregulate the expression of or prevent the degradation of p27kip1 during antigen recognition should be part of new therapeutic strategies to induce antigen-specific T-cell unresponsiveness.


Nature Immunology | 2001

Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells.

Dimitrios Tzachanis; Gordon J. Freeman; Naoto Hirano; Andre A. F. L. van Puijenbroek; Michael W. Delfs; Alla Berezovskaya; Lee M. Nadler; Vassiliki A. Boussiotis

During a search for genes that maintain T cell quiescence, we determined that Tob, a member of an anti-proliferative gene family, was highly expressed in anergic T cell clones. Tob was also expressed in unstimulated peripheral blood T lymphocytes and down-regulated during activation. Forced expression of Tob inhibited T cell proliferation and transcription of cytokines and cyclins. In contrast, suppression of Tob with an antisense oligonucleotide augmented CD3-mediated responses and abrogated the requirement of costimulation for maximal proliferation and cytokine secretion. Tob associated with Smad2 and Smad4 and enhanced Smad DNA-binding. The inhibitory effect of Tob on interleukin 2 (IL-2) transcription was not mediated by blockade of NFAT, AP-1 or NF-κB transactivation but by enhancement of Smad binding on the −105 negative regulatory element of the IL-2 promoter. Thus, T cell quiescence is an actively maintained phenotype that must be suppressed for T cell activation to occur.


Journal of Experimental Medicine | 2004

Activation of PI3K Is Indispensable for Interleukin 7-mediated Viability, Proliferation, Glucose Use, and Growth of T Cell Acute Lymphoblastic Leukemia Cells

João T. Barata; Ana Silva; Joana G. Brandao; Lee M. Nadler; Angelo A. Cardoso; Vassiliki A. Boussiotis

Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)–extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)–Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK–Erk pathway in T-ALL cells; however, inhibition of the MEK–Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7–mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7–mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7–induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.


Nature Communications | 2015

PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation

Nikolaos Patsoukis; Kankana Bardhan; Pranam Chatterjee; Duygu Sari; Bianling Liu; Lauren N. Bell; Edward D. Karoly; Gordon J. Freeman; Victoria Petkova; Pankaj Seth; Lequn Li; Vassiliki A. Boussiotis

During activation, T cells undergo metabolic reprogramming, which imprints distinct functional fates. We determined that on PD-1 ligation, activated T cells are unable to engage in glycolysis or amino acid metabolism but have an increased rate of fatty acid β-oxidation (FAO). PD-1 promotes FAO of endogenous lipids by increasing expression of CPT1A, and inducing lipolysis as indicated by elevation of the lipase ATGL, the lipolysis marker glycerol and release of fatty acids. Conversely, CTLA-4 inhibits glycolysis without augmenting FAO, suggesting that CTLA-4 sustains the metabolic profile of non-activated cells. Because T cells utilize glycolysis during differentiation to effectors, our findings reveal a metabolic mechanism responsible for PD-1-mediated blockade of T-effector cell differentiation. The enhancement of FAO provides a mechanistic explanation for the longevity of T cells receiving PD-1 signals in patients with chronic infections and cancer, and for their capacity to be reinvigorated by PD-1 blockade.

Collaboration


Dive into the Vassiliki A. Boussiotis's collaboration.

Researchain Logo
Decentralizing Knowledge