Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vassiliki Karantza is active.

Publication


Featured researches published by Vassiliki Karantza.


The EMBO Journal | 2015

Autophagy in malignant transformation and cancer progression

Lorenzo Galluzzi; Federico Pietrocola; José Manuel Bravo-San Pedro; Ravi K. Amaravadi; Eric H. Baehrecke; Francesco Cecconi; Patrice Codogno; Jayanta Debnath; David A. Gewirtz; Vassiliki Karantza; Alec C. Kimmelman; Sharad Kumar; Beth Levine; Maria Chiara Maiuri; Seamus J. Martin; Josef M. Penninger; Mauro Piacentini; David C. Rubinsztein; Hans-Uwe Simon; Anne Simonsen; Andrew Thorburn; Guillermo Velasco; Kevin M. Ryan; Guido Kroemer

Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.


Journal of Clinical Oncology | 2016

Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study

Rita Nanda; Laura Q. Chow; Claire Dees; Raanan Berger; Shilpa Gupta; Ravit Geva; Lajos Pusztai; Kumudu Pathiraja; Gursel Aktan; Jonathan D. Cheng; Vassiliki Karantza; Laurence Buisseret

PURPOSE Immune checkpoint inhibition has been demonstrated to be an effective anticancer strategy. Several lines of evidence support the study of immunotherapy in triple-negative breast cancer (TNBC). We assessed the safety and antitumor activity of the programmed cell death protein 1 (PD-1) inhibitor pembrolizumab in patients with advanced TNBC. METHODS KEYNOTE-012 (ClinicalTrials.gov identifier: NCT01848834) was a multicenter, nonrandomized phase Ib trial of single-agent pembrolizumab given intravenously at 10 mg/kg every 2 weeks to patients with advanced PD-L1-positive (expression in stroma or ≥ 1% of tumor cells by immunohistochemistry) TNBC, gastric cancer, urothelial cancer, and head and neck cancer. This report focuses on the TNBC cohort. RESULTS Among 111 patients with TNBC whose tumor samples were screened for PD-L1 expression, 58.6% had PD-L1-positive tumors. Thirty-two women (median age, 50.5 years; range, 29 to 72 years) were enrolled and assessed for safety and antitumor activity. The median number of doses administered was five (range, 1 to 36 doses). Common toxicities were mild and similar to those observed in other tumor cohorts (eg, arthralgia, fatigue, myalgia, and nausea), and included five (15.6%) patients with grade ≥ 3 toxicity and one treatment-related death. Among the 27 patients who were evaluable for antitumor activity, the overall response rate was 18.5%, the median time to response was 17.9 weeks (range, 7.3 to 32.4 weeks), and the median duration of response was not yet reached (range, 15.0 to ≥ 47.3 weeks). CONCLUSION This phase Ib study describes preliminary evidence of clinical activity and a potentially acceptable safety profile of pembrolizumab given every 2 weeks to patients with heavily pretreated, advanced TNBC. A single-agent phase II study examining a 200-mg dose given once every 3 weeks (ClinicalTrials.gov identifier: NCT02447003) is ongoing.


Cancer Biology & Therapy | 2011

Autophagy as a therapeutic target in cancer

Ning Chen; Vassiliki Karantza

Autophagy is a self-catabolic process that maintains intracellular homeostasis and prolongs cell survival under stress via lysosomal degradation of cytoplasmic constituents and recycling of amino acids and energy. Autophagy is intricately involved in many aspects of human health and disease, including cancer. Autophagy is a double-edged sword in tumorigenesis, acting both as a tumor suppressor and a protector of cancer cell survival, and elucidation of its exact role at different stages of cancer progression and in treatment responsiveness is a complex and challenging task. Better understanding of autophagy regulation and its impact on treatment outcome will potentially allow us to identify novel therapeutic targets in cancer. In this review, we summarize current knowledge on the regulation and dual function of autophagy in tumorigenesis, as well as ongoing efforts in modulating autophagy for cancer treatment and prevention. This is a very exciting and highly promising area of cancer research, as pharmacologic modulation of autophagy appears to augment the efficacy of currently available anticancer regimens and opens the way to the development of new combinatorial therapeutic strategies that will hopefully contribute to cancer eradication.


Frontiers in Oncology | 2012

The interplay between autophagy and ROS in tumorigenesis

Sameera Kongara; Vassiliki Karantza

Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1+/- mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5-/- and Atg7-/- livers give rise to adenomas, Atg4C-/- mice are susceptible to chemical carcinogenesis, and Bif1-/- mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions in tumorigenesis.


Cancer Research | 2016

Abstract S5-07: Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028

Hope S. Rugo; J-P Delord; S-A Im; Patrick A. Ott; Sarina Anne Piha-Paul; Philippe L. Bedard; Jasgit C. Sachdev; C. Le Tourneau; E. van Brummelen; A. Varga; Sanatan Saraf; Dina Pietrangelo; Vassiliki Karantza; Antoinette R. Tan

Background: The programmed cell death 1 (PD-1) pathway is used by tumors to evade immune surveillance. Pembrolizumab is a humanized anti–PD-1 monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2. Pembrolizumab has shown robust antitumor activity against several advanced malignancies, including triple-negative breast cancer. We assessed the safety and efficacy of pembrolizumab in patients with PD-L1–positive, ER+/HER2-negative advanced breast cancer. Methods: KEYNOTE-028 (ClinicalTrials.gov, NCT02054806) is an ongoing multicohort, open-label phase 1b study evaluating the safety and efficacy of pembrolizumab in patients with PD-L1–positive advanced solid tumors. Key eligibility criteria for this cohort include ER+ and HER2-negative tumor status defined by institutional standards, locally advanced or metastatic disease, ECOG performance status of 0 or 1, failure of or inability to receive standard therapy, and PD-L1 expression in stroma or in ≥1% of tumor cells as assessed at a central laboratory using a prototype immunohistochemistry assay with the 22C3 antibody (Merck). Pembrolizumab was administered at a dose of 10 mg/kg every 2 weeks for up to 24 months or until confirmed progression or intolerable toxicity. Response is based on RECIST v1.1 as assessed by investigator review every 8 weeks for the first 6 months and every 12 weeks thereafter. Primary efficacy end point is overall response rate (ORR). Results: Of the 248 patients with ER+/HER2-negative breast cancer who had evaluable tumor samples screened for PD-L1 expression, 48 (19%) had PD-L1–positive tumors. Of these, 25 patients were enrolled. Median age was 53 years (range, 36-79), and 44% of patients had an ECOG performance status of 1. Patients were heavily pretreated, with 76% having received ≥3 prior lines of therapy for advanced disease, including 48.0% who received ≥5 prior lines. Analyses of ORR, duration of response, and adverse events are ongoing and will be completed by September 4, 2015. Conclusion: Data from this KEYNOTE-028 cohort will provide information on the antitumor activity and safety of pembrolizumab in patients with heavily pretreated, PD-L1–positive, ER+/HER2-negative advanced breast cancer. Citation Format: Rugo HS, Delord J-P, Im S-A, Ott PA, Piha-Paul SA, Bedard PL, Sachdev J, Le Tourneau C, van Brummelen E, Varga A, Saraf S, Pietrangelo D, Karantza V, Tan A. Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. [abstract]. In: Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr S5-07.


Cancer Discovery | 2013

Autophagy Opposes p53-Mediated Tumor Barrier to Facilitate Tumorigenesis in a Model of PALB2-Associated Hereditary Breast Cancer

Yanying Huo; Hong Cai; Irina Teplova; Christian Bowman-Colin; Guanghua Chen; Sandy M. Price; Nicola Barnard; Shridar Ganesan; Vassiliki Karantza; Eileen White; Bing Xia

Hereditary breast cancers stem from germline mutations in susceptibility genes such as BRCA1, BRCA2, and PALB2, whose products function in the DNA damage response and redox regulation. Autophagy is an intracellular waste disposal and stress mitigation mechanism important for alleviating oxidative stress and DNA damage response activation; it can either suppress or promote cancer, but its role in breast cancer is unknown. Here, we show that similar to Brca1 and Brca2, ablation of Palb2 in the mouse mammary gland resulted in tumor development with long latency, and the tumors harbored mutations in Trp53. Interestingly, impaired autophagy, due to monoallelic loss of the essential autophagy gene Becn1, reduced Palb2-associated mammary tumorigenesis in a Trp53-wild-type but not conditionally null background. These results indicate that, in the face of DNA damage and oxidative stress elicited by PALB2 loss, p53 is a barrier to cancer development, whereas autophagy facilitates cell survival and tumorigenesis.


Autophagy | 2014

Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.

Michelle Cicchini; Rumela Chakrabarti; Sameera Kongara; Sandy M. Price; Ritu Nahar; Fred Lozy; Hua Zhong; Alexei Vazquez; Yibin Kang; Vassiliki Karantza

Earlier studies reported allelic deletion of the essential autophagy regulator BECN1 in breast cancers implicating BECN1 loss, and likely defective autophagy, in tumorigenesis. Recent studies have questioned the tumor suppressive role of autophagy, as autophagy-related gene (Atg) defects generally suppress tumorigenesis in well-characterized mouse tumor models. We now report that, while it delays or does not alter mammary tumorigenesis driven by Palb2 loss or ERBB2 and PyMT overexpression, monoallelic Becn1 loss promotes mammary tumor development in 2 specific contexts, namely following parity and in association with wingless-type MMTV integration site family, member 1 (WNT1) activation. Our studies demonstrate that Becn1 heterozygosity, which results in immature mammary epithelial cell expansion and aberrant TNFRSF11A/TNR11/RANK (tumor necrosis factor receptor superfamily, member 11a, NFKB activator) signaling, promotes mammary tumorigenesis in multiparous FVB/N mice and in cooperation with the progenitor cell-transforming WNT1 oncogene. Similar to our Becn1+/−;MMTV-Wnt1 mouse model, low BECN1 expression and an activated WNT pathway gene signature correlate with the triple-negative subtype, TNFRSF11A axis activation and poor prognosis in human breast cancers. Our results suggest that BECN1 may have nonautophagy-related roles in mammary development, provide insight in the seemingly paradoxical roles of BECN1 in tumorigenesis, and constitute the basis for further studies on the pathophysiology and treatment of clinically aggressive triple negative breast cancers (TNBCs).


Oncogene | 2010

The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis.

Yingying Liu; Ning Chen; Xiaoxing Cui; Xi Zheng; Li Deng; Sandy M. Price; Vassiliki Karantza; Audrey Minden

The Pak4 serine/threonine kinase is highly expressed in many cancer cell lines and human tumors. Although several studies have addressed the role for Pak4 in transformation of fibroblasts, most human cancers are epithelial in origin. Epithelial cancers are associated not only with changes in cell growth but also with changes in the cellular organization within the three-dimensional (3D) architecture of the affected tissues. In this study we used immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the role for Pak4 in mammary tumorigenesis. iMMECs are an excellent model system for studying breast cancer, as they can grow in 3D-epithelial cell culture, in which they form acinar structures that recapitulate in vivo mammary morphogenesis. Although Pak4 is expressed at low levels in wild-type iMMECs, it is overexpressed in response to oncogenes, such as oncogenic Ras and Her2/neu. In this study we found that overexpression of Pak4 in iMMECs leads to changes in 3D acinar architecture that are consistent with oncogenic transformation. These include decreased central acinar cell death, abrogation of lumen formation, cell polarity alterations and deregulation of acinar size and cell number. Furthermore, iMMECs overexpressing Pak4 form tumors when implanted into the fat pads of athymic mice. Our results suggest that overexpression of Pak4 triggers events that are important for the transformation of mammary epithelial cells. This is likely to be owing to the ability of Pak4 to inhibit apoptosis and promote cell survival and thus subsequent uncontrolled proliferation, and to its ability to deregulate cell shape and polarity.


Molecular Cancer Research | 2010

Autophagy Regulates Keratin 8 Homeostasis in Mammary Epithelial Cells and in Breast Tumors

Sameera Kongara; Olga Kravchuk; Irina Teplova; Fred Lozy; Jennifer Schulte; Dirk Moore; Nicola Barnard; Carola A. Neumann; Eileen White; Vassiliki Karantza

Autophagy is activated in response to cellular stressors and mediates lysosomal degradation and recycling of cytoplasmic material and organelles as a temporary cell survival mechanism. Defective autophagy is implicated in human pathology, as disruption of protein and organelle homeostasis enables disease-promoting mechanisms such as toxic protein aggregation, oxidative stress, genomic damage, and inflammation. We previously showed that autophagy-defective immortalized mouse mammary epithelial cells are susceptible to metabolic stress, DNA damage, and genomic instability. We now report that autophagy deficiency is associated with endoplasmic reticulum (ER) and oxidative stress, and with deregulation of p62-mediated keratin homeostasis in mammary cells, allograft tumors, and mammary tissues from genetically engineered mice. In human breast tumors, high phospho(Ser73)-K8 levels are inversely correlated with Beclin 1 expression. Thus, autophagy preserves cellular fitness by limiting ER and oxidative stress, a function potentially important in autophagy-mediated suppression of mammary tumorigenesis. Furthermore, autophagy regulates keratin homeostasis in the mammary gland via a p62-dependent mechanism. High phospho(Ser73)-K8 expression may be a marker of autophagy functional status in breast tumors and, as such, could have therapeutic implications for breast cancer patients. Mol Cancer Res; 8(6); 873–84. ©2010 AACR.


Autophagy | 2013

ATG proteins mediate efferocytosis and suppress inflammation in mammary involution

Irina Teplova; Fred Lozy; Sandy M. Price; Sukhwinder Singh; Nicola I. Barnard; Robert D. Cardiff; Raymond B. Birge; Vassiliki Karantza

Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1+/− and Atg7-deficient mammary epithelial cells (MECs) produced ‘competent’ apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment. Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance.

Collaboration


Dive into the Vassiliki Karantza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoinette R. Tan

Carolinas Healthcare System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hope S. Rugo

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge