Vassilios Bavetsias
Institute of Cancer Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vassilios Bavetsias.
Molecular Cancer Therapeutics | 2005
Lindsay Stimson; Martin G. Rowlands; Yvette Newbatt; Nicola F. Smith; Florence I. Raynaud; Paul M. Rogers; Vassilios Bavetsias; Stephen Gorsuch; Michael Jarman; Andrew J. Bannister; Tony Kouzarides; Edward McDonald; Paul Workman; G. Wynne Aherne
Histone acetylation plays an important role in regulating the chromatin structure and is tightly regulated by two classes of enzyme, histone acetyltransferases (HAT) and histone deacetylases (HDAC). Deregulated HAT and HDAC activity plays a role in the development of a range of cancers. Consequently, inhibitors of these enzymes have potential as anticancer agents. Several HDAC inhibitors have been described; however, few inhibitors of HATs have been disclosed. Following a FlashPlate high-throughput screen, we identified a series of isothiazolone-based HAT inhibitors. Thirty-five N-substituted analogues inhibited both p300/cyclic AMP–responsive element binding protein–binding protein–associated factor (PCAF) and p300 (1 to >50 μmol/L, respectively) and the growth of a panel of human tumor cell lines (50% growth inhibition, 0.8 to >50 μmol/L). CCT077791 and CCT077792 decreased cellular acetylation in a time-dependent manner (2–48 hours of exposure) and a concentration-dependent manner (one to five times, 72 hours, 50% growth inhibition) in HCT116 and HT29 human colon tumor cell lines. CCT077791 reduced total acetylation of histones H3 and H4, levels of specific acetylated lysine marks, and acetylation of α-tubulin. Four and 24 hours of exposure to the compounds produced the same extent of growth inhibition as 72 hours of continuous exposure, suggesting that growth arrest was an early event. Chemical reactivity of these compounds, as measured by covalent protein binding and loss of HAT inhibition in the presence of DTT, indicated that reaction with thiol groups might be important in their mechanism of action. As one of the first series of small-molecule inhibitors of HAT activity, further analogue synthesis is being pursued to examine the potential scope for reducing chemical reactivity while maintaining HAT inhibition.
Leukemia | 2012
Andrew S. Moore; Amir Faisal; D. Gonzalez de Castro; Vassilios Bavetsias; Chongbo Sun; Butrus Atrash; Melanie Valenti; A de Haven Brandon; Sian Avery; D. Mair; Fabio Mirabella; J Swansbury; Andy Pearson; Paul Workman; Julian Blagg; Florence I. Raynaud; Suzanne A. Eccles; Spiros Linardopoulos
Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD+ acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD+ human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD+ allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD+ patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.
Frontiers in Oncology | 2015
Vassilios Bavetsias; Spiros Linardopoulos
The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions.
Molecular Cancer Therapeutics | 2007
Florence Chan; Chongbo Sun; Meg Perumal; Quang-Dé Nguyen; Vassilios Bavetsias; Edward McDonald; Vanessa Martins; Nicola E. Wilsher; Florence I. Raynaud; Melanie Valenti; Sue Eccles; Robert te Poele; Paul Workman; Eric O. Aboagye; Spiros Linardopoulos
The Aurora family of serine/threonine kinases is important for the regulation of centrosome maturation, chromosome segregation, and cytokinesis during mitosis. Overexpression of Aurora kinases in mammalian cells leads to genetic instability and transformation. Increased levels of Aurora kinases have also been linked to a broad range of human tumors. Here, we describe the properties of CCT129202, a representative of a structurally novel series of imidazopyridine small-molecule inhibitors of Aurora kinase activity. This compound showed high selectivity for the Aurora kinases over a panel of other kinases tested and inhibits proliferation in multiple cultured human tumor cell lines. CCT129202 causes the accumulation of human tumor cells with ≥4N DNA content, leading to apoptosis. CCT120202-treated human tumor cells showed a delay in mitosis, abrogation of nocodazole-induced mitotic arrest, and spindle defects. Growth of HCT116 xenografts in nude mice was inhibited after i.p. administration of CCT129202. We show that p21, the cyclin-dependent kinase inhibitor, is induced by CCT129202. Up-regulation of p21 by CCT129202 in HCT116 cells led to Rb hypophosphorylation and E2F inhibition, contributing to a decrease in thymidine kinase 1 transcription. This has facilitated the use of 3′-deoxy-3′[18F]fluorothymidine-positron emission tomography to measure noninvasively the biological activity of the Aurora kinase inhibitor CCT129202 in vivo. [Mol Cancer Ther 2007;6(12):3147–57]
Journal of Medicinal Chemistry | 2010
Vassilios Bavetsias; Jonathan M. Large; Chongbo Sun; Nathalie Bouloc; Magda N. Kosmopoulou; Mizio Matteucci; Nicola E. Wilsher; Vanessa Martins; Jóhannes Reynisson; Butrus Atrash; Amir Faisal; Frederique Urban; Melanie Valenti; Alexis de Haven Brandon; Gary Box; Florence I. Raynaud; Paul Workman; Suzanne A. Eccles; Richard Bayliss; Julian Blagg; Spiros Linardopoulos; Edward McDonald
Lead optimization studies using 7 as the starting point led to a new class of imidazo[4,5-b]pyridine-based inhibitors of Aurora kinases that possessed the 1-benzylpiperazinyl motif at the 7-position, and displayed favorable in vitro properties. Cocrystallization of Aurora-A with 40c (CCT137444) provided a clear understanding into the interactions of this novel class of inhibitors with the Aurora kinases. Subsequent physicochemical property refinement by the incorporation of solubilizing groups led to the identification of 3-((4-(6-bromo-2-(4-(4-methylpiperazin-1-yl)phenyl)-3H-imidazo[4,5-b]pyridin-7-yl)piperazin-1-yl)methyl)-5-methylisoxazole (51, CCT137690) which is a potent inhibitor of Aurora kinases (Aurora-A IC(50) = 0.015 +/- 0.003 muM, Aurora-B IC(50) = 0.025 muM, Aurora-C IC(50) = 0.019 muM). Compound 51 is highly orally bioavailable, and in in vivo efficacy studies it inhibited the growth of SW620 colon carcinoma xenografts following oral administration with no observed toxicities as defined by body weight loss.
Journal of Medicinal Chemistry | 2013
Sébastien Naud; Isaac M. Westwood; Amir Faisal; Peter Sheldrake; Vassilios Bavetsias; Butrus Atrash; Kwai-Ming J. Cheung; Manjuan Liu; Angela Hayes; Jessica Schmitt; Amy Wood; Vanessa Choi; Kathy Boxall; Grace Mak; Mark Gurden; Melanie Valenti; Alexis de Haven Brandon; Alan T. Henley; Ross Baker; Craig McAndrew; Berry Matijssen; Rosemary Burke; Swen Hoelder; Suzanne A. Eccles; Florence I. Raynaud; Spiros Linardopoulos; Rob L. M. van Montfort; Julian Blagg
The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.
Bioorganic & Medicinal Chemistry | 2009
Stephen Gorsuch; Vassilios Bavetsias; Martin G. Rowlands; G. Wynne Aherne; Paul Workman; Michael Jarman; Edward McDonald
High-throughput screening led to the identification of isothiazolones 1 and 2 as inhibitors of histone acetyltransferase (HAT) with IC50s of 3 microM and 5 microM, respectively. Analogues of these hit compounds with variations of the N-phenyl group, and with variety of substituents at C-4, C-5 of the thiazolone ring, were prepared and assayed for inhibition of the HAT enzyme PCAF. Potency is modestly favoured when the N-aryl group is electron deficient (4-pyridyl derivative 10 has IC(50)=1.5 microM); alkyl substitution at C-4 has little effect, whilst similar substitution at C-5 causes a significant drop in potency. The ring-fused compound 38 has activity (IC(50)=6.1 microM) to encourage further exploration of this bicyclic structure. The foregoing SAR is consistent with an inhibitory mechanism involving cleavage of the S-N bond of the isothiazolone ring by a catalytically important thiol residue.
Molecular Cancer Therapeutics | 2011
Amir Faisal; Lynsey Vaughan; Vassilios Bavetsias; Chongbo Sun; Butrus Atrash; Sian Avery; Yann Jamin; Simon P. Robinson; Paul Workman; Julian Blagg; Florence I. Raynaud; Suzanne A. Eccles; Louis Chesler; Spiros Linardopoulos
Aurora kinases regulate key stages of mitosis including centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. Aurora A and B kinase overexpression has also been associated with various human cancers, and as such, they have been extensively studied as novel antimitotic drug targets. Here, we characterize the Aurora kinase inhibitor CCT137690, a highly selective, orally bioavailable imidazo[4,5-b]pyridine derivative that inhibits Aurora A and B kinases with low nanomolar IC50 values in both biochemical and cellular assays and exhibits antiproliferative activity against a wide range of human solid tumor cell lines. CCT137690 efficiently inhibits histone H3 and transforming acidic coiled-coil 3 phosphorylation (Aurora B and Aurora A substrates, respectively) in HCT116 and HeLa cells. Continuous exposure of tumor cells to the inhibitor causes multipolar spindle formation, chromosome misalignment, polyploidy, and apoptosis. This is accompanied by p53/p21/BAX induction, thymidine kinase 1 downregulation, and PARP cleavage. Furthermore, CCT137690 treatment of MYCN-amplified neuroblastoma cell lines inhibits cell proliferation and decreases MYCN protein expression. Importantly, in a transgenic mouse model of neuroblastoma that overexpresses MYCN protein and is predisposed to spontaneous neuroblastoma formation, this compound significantly inhibits tumor growth. The potent preclinical activity of CCT137690 suggests that this inhibitor may benefit patients with MYCN-amplified neuroblastoma. Mol Cancer Ther; 10(11); 2115–23. ©2011 AACR.
Journal of Medicinal Chemistry | 2013
Vassilios Bavetsias; Amir Faisal; Simon Crumpler; Nathan Brown; Magda N. Kosmopoulou; Amar Joshi; Butrus Atrash; Yolanda Pérez-Fuertes; Jessica Schmitt; Katherine J. Boxall; Rosemary Burke; Chongbo Sun; Sian Avery; Katherine Bush; Alan T. Henley; Florence I. Raynaud; Paul Workman; Richard Bayliss; Spiros Linardopoulos; Julian Blagg
Aurora-A differs from Aurora-B/C at three positions in the ATP-binding pocket (L215, T217, and R220). Exploiting these differences, crystal structures of ligand–Aurora protein interactions formed the basis of a design principle for imidazo[4,5-b]pyridine-derived Aurora-A-selective inhibitors. Guided by a computational modeling approach, appropriate C7-imidazo[4,5-b]pyridine derivatization led to the discovery of highly selective inhibitors, such as compound 28c, of Aurora-A over Aurora-B. In HCT116 human colon carcinoma cells, 28c and 40f inhibited the Aurora-A L215R and R220K mutants with IC50 values similar to those seen for the Aurora-A wild type. However, the Aurora-A T217E mutant was significantly less sensitive to inhibition by 28c and 40f compared to the Aurora-A wild type, suggesting that the T217 residue plays a critical role in governing the observed isoform selectivity for Aurora-A inhibition. These compounds are useful small-molecule chemical tools to further explore the function of Aurora-A in cells.
Journal of Medicinal Chemistry | 2016
Vassilios Bavetsias; Rachel M. Lanigan; Gian Filippo Ruda; Butrus Atrash; Mark McLaughlin; Anthony Tumber; N. Yi Mok; Yann-Vaï Le Bihan; Sally Dempster; Katherine J. Boxall; F. Jeganathan; Stephanie B. Hatch; P. Savitsky; S. Velupillai; T. Krojer; Katherine S. England; Jimmy Sejberg; Ching Thai; Adam Donovan; Akos Pal; Giuseppe Scozzafava; James M. Bennett; Akane Kawamura; C. Johansson; A. Szykowska; C. Gileadi; N. Burgess-Brown; Frank von Delft; U. Oppermann; Zoë S. Walters
We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.