Vassilios Beglopoulos
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vassilios Beglopoulos.
Neuron | 2004
Carlos A. Saura; Se-Young Choi; Vassilios Beglopoulos; Seema Malkani; Dawei Zhang; B. S. Shankaranarayana Rao; Sumantra Chattarji; Raymond J. Kelleher; Eric R. Kandel; Karen Duff; Alfredo Kirkwood; Jie Shen
Mutations in presenilins are the major cause of familial Alzheimers disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex.
Nature | 2009
Chen Zhang; Bei Wu; Vassilios Beglopoulos; Mary Wines-Samuelson; Dawei Zhang; Ioannis Dragatsis; Thomas C. Südhof; Jie Shen
Mutations in the presenilin genes are the main cause of familial Alzheimer’s disease. Loss of presenilin activity and/or accumulation of amyloid-β peptides have been proposed to mediate the pathogenesis of Alzheimer’s disease by impairing synaptic function. However, the precise site and nature of the synaptic dysfunction remain unknown. Here we use a genetic approach to inactivate presenilins conditionally in either presynaptic (CA3) or postsynaptic (CA1) neurons of the hippocampal Schaeffer-collateral pathway. We show that long-term potentiation induced by theta-burst stimulation is decreased after presynaptic but not postsynaptic deletion of presenilins. Moreover, we found that presynaptic but not postsynaptic inactivation of presenilins alters short-term plasticity and synaptic facilitation. The probability of evoked glutamate release, measured with the open-channel NMDA (N-methyl-d-aspartate) receptor antagonist MK-801, is reduced by presynaptic inactivation of presenilins. Notably, depletion of endoplasmic reticulum Ca2+ stores by thapsigargin, or blockade of Ca2+ release from these stores by ryanodine receptor inhibitors, mimics and occludes the effects of presynaptic presenilin inactivation. Collectively, these results indicate a selective role for presenilins in the activity-dependent regulation of neurotransmitter release and long-term potentiation induction by modulation of intracellular Ca2+ release in presynaptic terminals, and further suggest that presynaptic dysfunction might be an early pathogenic event leading to dementia and neurodegeneration in Alzheimer’s disease.
Developmental Neuroscience | 2006
Xudong Yang; Taisuke Tomita; Mary Wines-Samuelson; Vassilios Beglopoulos; Malú G. Tansey; Raphael Kopan; Jie Shen
The Notch signaling pathway plays a variety of roles in cell fate decisions during development. Previous studies have shown that reduced Notch signaling results in premature differentiation of neural progenitor cells, while increased Notch activities promote apoptotic death of neural progenitor cells in the developing brain. Whether Notch signaling is involved in the specification of neuronal subtypes is unclear. Here we examine the role of Notch1 in the development of neuronal subtypes in the spinal cord using conditional knockout (cKO) mice lacking Notch1 specifically in neural progenitor cells. Notch1 inactivation results in accelerated neuronal differentiation in the ventral spinal cord and gradual disappearance of the ventral central canal. These changes are accompanied by reduced expression of Hes1 and Hes5 and increased expression of Mash1 and Neurogenin 1 and 2. Using markers (Nkx2.2, Nkx6.1, Olig2, Pax6 and Dbx1) for one or multiple progenitor cell types, we found reductions of all subtypes of progenitor cells in the ventral spinal cord of Notch1 cKO mice. Similarly, using markers (Islet1/2, Lim3, Sim1, Chox10, En1 and Evx1/2) specific for motor neurons and distinct classes of interneurons, we found increases in the number of V0–2 interneurons in the ventral spinal cord of Notch1 cKO mice. Specifically, the number of Lim3+/Chox10+ V2 interneurons is markedly increased while the number of Lim3+/Islet+motor neurons is decreased in the Notch1 cKO spinal cord, suggesting that V2 interneurons are generated at the expense of motor neurons in the absence of Notch1. These results provide support for a role of Notch1 in neuronal subtype specification in the ventral spinal cord.
Neuromolecular Medicine | 2004
Vassilios Beglopoulos; Jie Shen
Studies using genetic manipulations have proven invaluable in the research of neurological disorders. In the forefront of these approaches is the knockout technology that engineers a targeted gene mutation in mice resulting in inactivation of gene expression. In many cases, important roles of a particular gene in embryonic development have precluded the in vivo study of its function in the adult brain, which is usually the most relevant experimental context for the study of neurological disorders. The conditional knockout technology has provided a tool to overcome this restriction and has been used successfully to generate viable mouse models with gene inactivation patterns in certain regions or cell types of the postnatal brain. This review first describes the methodology of gene targeting in mice, detailing the aspects of designing a targeting vector, introducing it into embryonic stem cells in culture and screening for correct recombination events, and generating chimeric and null mutant mice from the positive clones. It then discusses the special issues and considerations for the generation of conditional knock-out mice, including a section about approaches for inducible gene inactivation in the brain and some of their applications. An overview of gene-targeted mouse models that have been used in the study of several neurological disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, seizure disorders, and schizophrenia, is also presented. The importance of the results obtained by these models for the understanding of the pathogenic mechanism underlying the disorders is discussed.
Journal of Biological Chemistry | 2009
Hirotaka Watanabe; Miriam J. Smith; Elizabeth Heilig; Vassilios Beglopoulos; Raymond J. Kelleher; Jie Shen
Presenilins are essential for synaptic function, memory formation, and neuronal survival. Previously, we reported that expression of cAMP response element-binding protein (CREB) target genes is reduced in the cerebral cortex of presenilin (PS) conditional double knock-out (cDKO) mice. To determine whether the reduced expression of the CREB target genes in these mutant mice is due to loss of presenilin directly or secondary to the impaired neuronal activity, we established a sensitive luciferase reporter system to assess direct transcriptional regulation in cultured cells. We first used immortalized PS-deficient mouse embryonic fibroblasts (MEFs), and found that both CREB-mediated transcription and Notch-mediated HES1 transcription are decreased. However, the ubiquitin-C promoter-mediated transcription is also reduced, and among these three reporters, transfection of exogenous PS1 can rescue only the Notch-mediated HES1 transcription. Further Northern analysis revealed transcriptional alterations of Creb, ubiquitin-C, and other housekeeping genes in PS-deficient MEFs, indicating transcriptional dysregulation in these cells. We then used the Cre/loxP system to develop a postnatal PS-deficient cortical neuronal culture. Surprisingly, in these PS-null neurons, CREB-mediated transcription is not significantly decreased, and levels of total and phosphorylated CREB proteins are unchanged as well. Notch-mediated HES1 transcription is markedly reduced, and this reduction can be rescued by exogenous PS1. Together, our findings suggest that CREB-mediated transcription is regulated indirectly by PS in the adult cerebral cortex, and that attenuation of CREB target gene expression in PS cDKO mice is likely due to reduced neuronal activity in these mutant brains.
Neurodegenerative Diseases | 2005
Xiaoyan Sun; Vassilios Beglopoulos; Mark P. Mattson; Jie Shen
Mutations in presenilins (PS) 1 and 2 are the major cause of familial Alzheimer’s disease. Conditional inactivation of PS1 in the mouse postnatal forebrain leads to mild deficits in spatial learning and memory, whereas inactivation of both PS1 and PS2 results in severe memory and synaptic plasticity impairments, followed by progressive and substantial neurodegeneration. Here we investigate the effect of a familial Alzheimer’s disease-linked PS1 missense mutation using knock-in (KI) mice, in which the wild-type PS1 allele is replaced with the M146V mutant allele. In the Morris water maze task, PS1 KI mice at 3 months of age exhibit reduced quadrant occupancy and platform crossing in the probe trial after 6 days of training, though their performance was normal in the probe trial after 12 days of training. By the age of 9 months, even after 12 days of training, PS1 homozygous KI mice still exhibit reduced platform crossing in the post-training probe trial. ELISA analysis revealed a selective increase in cortical levels of β-amyloid 42 in PS1 KI mice, whereas production of β-amyloid 40 was normal. Histological and quantitative real-time RT-PCR analyses showed normal gross hippocampal morphology and unaltered expression of three genes involved in inflammatory responses in PS1 KI mice. These results show hippocampal spatial memory impairments caused by the PS1 M146V mutation and age-related deterioration of the memory impairment, suggesting that PS1 KI mice are a valuable model system for the study of memory loss in AD.
Annals of General Psychiatry | 2006
Vassilios Beglopoulos; Carlos A. Saura; Jie Shen
Background Mutations in presenilins (PS1 and PS2) are the major cause of familial Alzheimers disease (FAD). FAD-linked PS mutations are generally thought to lead to AD pathogenesis through their property to increase the levels of the toxic peptide beta-amyloid 42 (Abeta42). Although a large body of information exists on the biochemistry and cell biology of presenilins, the normal function of presenilins in the adult mammalian brain has been largely unknown.
Journal of Biological Chemistry | 2004
Vassilios Beglopoulos; Xiaoyan Sun; Carlos A. Saura; Cynthia A. Lemere; Richard D. Kim; Jie Shen
Trends in Pharmacological Sciences | 2006
Vassilios Beglopoulos; Jie Shen
Neurobiology of Aging | 2004
Jie Shen; Carlos A. Saura; Se-Young Choi; Vassilios Beglopoulos; Seema Malkani; Dawei Zhang; B. S. Shankaranarayana Rao; Sumantra Chattarji; Raymond J. Kelleher; Eric R. Kandel; Karen Duff; Alfredo Kirkwood