Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vassilis J. Demopoulos is active.

Publication


Featured researches published by Vassilis J. Demopoulos.


Current Medicinal Chemistry | 2009

Aldose Reductase Enzyme and its Implication to Major Health Problems of the 21st Century

Polyxeni Alexiou; Kyriaki Pegklidou; Maria Chatzopoulou; Ioannis Nicolaou; Vassilis J. Demopoulos

Aldose reductase enzyme (ALR2) of the polyol metabolic pathway, apart from its role as detoxifying enzyme towards toxic aldehydes, osmoregulator in the kidney and regulator of sperm maturation, was first found to be implicated in the etiology of the long term diabetic complications. However, to date, emerging reports have suggested that under normal glucose concentration, ALR2 may be up-regulated by factors other than hyperglycemia and therefore be involved also in other pathological processes that have become major threats to human health in the 21(st) century. Such pathologies are a number of cardiac disorders, inflammation, mood disorders, renal insufficiency and ovarian abnormalities. In addition, ALR2 was found to be over-expressed in different human cancers such as liver, breast, ovarian, cervical and rectal cancers. Although several aldose reductase inhibitors (ARIs) have progressed to the clinical level, only one is currently on the market. Thus, attention is currently targeted to discover ARIs of distinct chemical structures, being neither hydantoin nor carboxylic acid derivatives. The present review focuses on the molecular mechanisms by which ALR2 is implicated in a number of pathologies, on various aspects concerning its catalytic mechanism and its active site, and on the main classes of ARIs that have been developed to date, as well as on reported (quantitive) structure-activity relationships. The presented data aim to support the notion that ARIs are of pharmacotherapeutic interest for the pharmaceutical community and highlight essential aspects for the development of efficient and potent ARIs.


Current Medicinal Chemistry | 2010

RAGE: A Multi-Ligand Receptor Unveiling Novel Insights in Health and Disease

Polyxeni Alexiou; Maria Chatzopoulou; Kyriaki Pegklidou; Vassilis J. Demopoulos

Receptor for advanced glycation end products (RAGE) is expressed in a range of cell types such as endothelial cells, smooth muscle cells, mesangial cells, mononuclear phagocytes and certain neurons. It is a multi-ligand receptor and a member of the immunoglobulin superfamily of cell surface molecules. Its repertoire of ligands includes advanced glycation end products (AGEs), amyloid fibrils, amphoterin and S100/calgranulins. This variety of ligands allows RAGE to be implicated in a wide spectrum of pathological conditions such as diabetes and its complications, Alzheimers disease, cancer and inflammation. Additionally, genetic polymorphisms in the RAGE gene may have impact on the functional activity of the receptor. It becomes obvious that RAGE pathway is a complicated one and the question of whether blockade of RAGE is a feasible and safe strategy for the prevention/treatment of chronic diseases is gradually gaining the attention of the pharmaceutical community. In this review the biology of RAGE and the triggered signaling cascades involved in health and disease will be presented. Additionally, its potential as an attractive pharmacotherapeutic target will be explored by pointing out the pharmacotherapeutic agents that have been developed for RAGE blockade.


Journal of Medicinal Chemistry | 2010

A Diverse Series of Substituted Benzenesulfonamides as Aldose Reductase Inhibitors with Antioxidant Activity: Design, Synthesis, and in Vitro Activity

Polyxeni Alexiou; Vassilis J. Demopoulos

We have previously reported the successful replacement of a carboxylic acid functionality with that of a difluorophenolic group on the known aldose reductase inhibitors (ARIs) of 2-(phenylsulfonamido)acetic acid chemotype. In the present work, based on bioisosteric principles, additional 2,6-difluorophenol and tetrazole, methylsulfonylamide, and isoxazolidin-3-one phenylsulfonamide derivatives were synthesized and tested in vitro in protocols primarily related to the long-term diabetic complications. Most of the compounds were found as ARIs at IC(50) < 100 μM, while the introduction of the 4-bromo-2-fluorobenzyl group in a phenylsulfonamidodifluorophenol structure resulted in a compound (4c) presenting a submicromolar inhibitory profile. However, the derivatives of tetrazole, methylsulfonylamine, and the (R)-enantiomer of isoxazolidin-3-one did not exhibit appreciable ARI activity. The selectivity of the active ARIs is also discussed. Furthermore, the synthesized compounds exhibited potent antioxidant potential (homogeneous and heterogeneous systems).


Bioorganic & Medicinal Chemistry | 2010

Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole.

Kyriaki Pegklidou; Catherine Koukoulitsa; Ioannis Nicolaou; Vassilis J. Demopoulos

Pyrrolyl-propionic and butyric-acid derivatives 1 and 2 were synthesized in order to study the effect of the variation of the methylene chain in comparison to the previously reported pyrrolyl-acetic acid compound I, which was found as potent aldose reductase inhibitor, while the pyrrolyl-tetrazole derivatives 3-5 were prepared as a non-classical bioisosteres of a carboxylic acid moiety. Also, pyrrolyl-tetrazole isomers 6 and 7 without an alkyl chain between the two aromatic rings were synthesized. The in vitro aldose reductase inhibitory activity of the prepared 1-7 compounds were estimated and compared with that of the initial compound (I). Overall, the data indicate that the presented chemotypes 6 and 7 are a promising lead compounds for the development of selective aldose reductase inhibitors, aiming to the long-term complications of diabetes mellitus.


Expert Opinion on Therapeutic Patents | 2012

Novel aldose reductase inhibitors: a patent survey (2006--present).

Maria Chatzopoulou; Polyxeni Alexiou; Eleni Kotsampasakou; Vassilis J. Demopoulos

Introduction: Initially studied for its central role in the pathogenesis of chronic diabetic complications, aldose reductase (ALR2) gains more attention over the years as its implication in inflammatory diseases is being established, along with the therapeutic potential of its inhibitors. Areas covered: Reviewing the patents that were published since 2006, it is getting clear that the search for new chemical entities has subsided, giving rise to natural products and plant extracts with ALR2 inhibitory activity. Other aspects that were prominent were the search for proper forms of known inhibitors, in a way to improve their impaired physicochemical profile, as well as potential combination therapies with other compounds of pharmaceutical interest. On the spotlight were patents enhancing the therapeutic usage of aldose reductase inhibitors (ARIs) to various pathological conditions including cancer and inflammation-mediated diseases such as sepsis, asthma, and cancer. Expert opinion: Although new chemical entities are scarcely registered and patented after many years of inconclusive clinical trials, the involvement of ALR2 to inflammatory pathologies might renew the interest in the field of ARIs.


Annals of General Hospital Psychiatry | 2004

Behavioral and antioxidant activity of a tosylbenz[g]indolamine derivative. A proposed better profile for a potential antipsychotic agent

Chara A Zika; Ioannis Nicolaou; Antonis Gavalas; George V. Rekatas; Ekaterini Tani; Vassilis J. Demopoulos

BackgroundTardive dyskinesia (TD) is a major limitation of older antipsychotics. Newer antipsychotics have various other side effects such as weight gain, hyperglycemia, etc. In a previous study we have shown that an indolamine molecule expresses a moderate binding affinity at the dopamine D2 and serotonin 5-HT1A receptors in in vitro competition binding assays. In the present work, we tested its p-toluenesulfonyl derivative (TPBIA) for behavioral effects in rats, related to interactions with central dopamine receptors and its antioxidant activity.MethodsAdult male Fischer-344 rats grouped as: i) Untreated rats: TPBIA was administered i.p. in various doses ii) Apomorphine-treated rats: were treated with apomorphine (1 mg kg-1, i.p.) 10 min after the administration of TPBIA. Afterwards the rats were placed individually in the activity cage and their motor behaviour was recorded for the next 30 min The antioxidant potential of TPBIA was investigated in the model of in vitro non enzymatic lipid peroxidation.Resultsi) In non-pretreated rats, TPBIA reduces the activity by 39 and 82% respectively, ii) In apomorphine pretreated rats, TPBIA reverses the hyperactivity and stereotype behaviour induced by apomorphine. Also TPBIA completely inhibits the peroxidation of rat liver microsome preparations at concentrations of 0.5, 0.25 and 0.1 mM.ConclusionTPBIA exerts dopamine antagonistic activity in the central nervous system. In addition, its antioxidant effect is a desirable property, since TD has been partially attributed, to oxidative stress. Further research is needed to test whether TPBIA may be used as an antipsychotic agent.


Journal of Medicinal Chemistry | 2010

Toward the Development of Innovative Bifunctional Agents To Induce Differentiation and To Promote Apoptosis in Leukemia: Clinical Candidates and Perspectives

Ioannis S. Vizirianakis; Maria Chatzopoulou; Ioannis D. Bonovolias; Ioannis Nicolaou; Vassilis J. Demopoulos; Asterios S. Tsiftsoglou

Although the outcome of therapy for leukemia has improved over the years, mainly in younger patients, less than a third of adults with acute myeloid leukemia (AML), for example, are cured by current treatments, a fact stressing the need for new therapeutic approaches. Since leukemias are considered disorders of self-renewal, differentiation, and apoptosis of hematopoietic stem cells (HSCs) and/or their early progenitors, the treatment of leukemia is rapidly changing from conventional chemotherapy toward a more innovative individualized and targeted therapy. The discovery of leukemia stems cells (LSCs) in the late 1990s as a minor fraction within the subpopulation of hematopoietic cells and the compelling research efforts initiated thereafter have clearly shown that many malignancies are maintained via stemlike cells having the capacity for indefinite self-renewal. This LSC hypothesis has established the notion that the emergence of drug resistance and the clinical relapse of leukemias following an initial remission induced by cytotoxic or targeted therapy agents is related to acquired mutations of LSCs. Therefore, eradication of LSCs is considered necessary for the radical treatment of leukemias. As a matter of fact, novel exploitable targets for leukemia therapy emerged including enzymes like tyrosine kinases involved in signal transduction pathways, genes encoding proteins that regulate apoptosis and differentiation of malignant cells, celllineage transcriptional factors, angiogenesis factors, and unique proteins driving the cell cycle machinery. Interestingly, within the group of antileukemia agents exist small molecule drugs like tyrosine kinase inhibitors, proteasome inhibitors, farnesyl transferase inhibitors, hypomethylating agents, histone deacetylase inhibitors, mTOR targeting agents, bcl-2 inhibitors, and inhibitors of cyclin-dependent kinases (Figure 1). This paper is a comprehensive overview of the scientific efforts made to develop novel antileukemia therapeutics by presenting chemical, pharmacological, and pharmacogenomic data obtained during preclinical and clinical assessment of these agents.Furthermore, the designated synthesis of newmedicines inducing differentiation, cell cycle arrest, and/or promoting apoptosis along with multitargeted therapeutics will be also discussed. Such novel agents can be used in combination with other agents modulating different signaling pathways and molecular targets within the leukemia cells to overcome the emergence of drug resistance. This information can then be discussed from a pharmacogenomic view of antileukemia therapeutics. Individual genetic variations recorded in antileukemia drug therapy can be critical for personalized medicine and their clinical exploitation can achieve better pharmacotherapy outcomes.


Current Diabetes Reviews | 2010

Nutritional Overview on the Management of Type 2 Diabetes and the Prevention of its Complications

Kyriaki Pegklidou; Ioannis Nicolaou; Vassilis J. Demopoulos

Diabetes mellitus is an increasing world health problem; particularly the prevalence of type 2 diabetes has assumed epidemic dimensions in Western industrialized societies. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. Several epidemiological studies have linked over nutrition and lack of physical activity with type 2 diabetes. Indeed, the excessive consumption of energy dense foods as source of carbohydrates and fats along with ineffective medical management has negative impact on controlling blood glucose levels and on insulin response. This usually leads to a hyperglycemic state, which is associated with the development of the devastating secondary complications. Dietary guidelines have always been important for people with diabetes mellitus. Nutrition management aims to improve health quality maintaining blood glucose levels in normal range so as to reduce the risk for diabetes complications. A well-balanced diet that provides the essential macro- and micro-nutrients is always an impaired need for a patient with diabetes. In this article nutrition recommendations will be displayed for the management of diabetes type 2 and the prevention of its complications. Particular emphasis will be given to the important role of micronutrients such as trace elements and vitamins as well as to the potentiality of some dietary agents to inhibit aldose reductase enzyme, implicated in the etiology of diabetes complications.


Bioorganic & Medicinal Chemistry | 2011

Structure–activity relations on [1-(3,5-difluoro-4-hydroxyphenyl)-1H-pyrrol-3-yl]phenylmethanone. The effect of methoxy substitution on aldose reductase inhibitory activity and selectivity

Maria Chatzopoulou; Eduard Mamadou; Maria Juskova; Cathrine Koukoulitsa; Ioannis Nicolaou; Milan Stefek; Vassilis J. Demopoulos

Based on our previous work, we studied the effect of methoxy-substitution as well as the regioposition of the benzoyl-moiety of 4a [(1-(3,5-difluoro-4-hydroxyphenyl)-1H-pyrrol-3-yl)(phenyl)methanone]. On this basis, compounds 4b-c and 5a-c were synthesized and assayed for aldose and aldehyde reductase inhibitory activity. Furthermore, a 4,6-difluoro-5-hydroxyphenyl pattern (9) was studied, in order to verify the optimum position of the phenol-moiety. Compound 5b emerged as the most potent and selective inhibitor. Moreover, further assays proved 5b as a potent antioxidant and an inhibitor of sorbitol accumulation in isolated rat lenses. Combining the above attributes, 5b could serve as a lead compound targeted at long-term diabetes complications.


Expert Opinion on Drug Discovery | 2013

Development of aldose reductase inhibitors for the treatment of inflammatory disorders.

Maria Chatzopoulou; Kyriaki Pegklidou; Nikolaos Papastavrou; Vassilis J. Demopoulos

Introduction: Accumulating evidence attributes a significant role to aldose reductase (ALR2) in the pathogenesis of several inflammatory pathologies. Aldose reductase inhibitors (ARIs) were found to attenuate reactive oxygen species (ROS) production both in vitro and in vivo. Thus, they disrupt signaling cascades that lead to the production of cytokines/chemokines, which induce and exacerbate inflammation. As a result, ARIs might hold a significant therapeutic potential as alternate anti-inflammatory drugs. Areas covered: The authors present a comprehensive review of the current data that support the central role of ALR2 in several inflammatory pathologies (i.e., diabetes, cancer, sepsis, asthma and ocular inflammation). Further, the authors describe the potential underlying molecular mechanisms and provide a commentary on the status of ARIs in this field. Expert opinion: It is important that future efforts focus on delineating all the steps of the molecular mechanism that implicates ALR2 in inflammatory pathologies. At the same time, utilizing the previous efforts in the field of ARIs, several candidates that have been proven safe in the clinic may be evaluated for their clinical significance as anti-inflammatory medication. Finally, structurally novel ARIs, designed to target specifically the proinflammatory subpocket of ALR2, should be pursued.

Collaboration


Dive into the Vassilis J. Demopoulos's collaboration.

Top Co-Authors

Avatar

Ioannis Nicolaou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Polyxeni Alexiou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Maria Chatzopoulou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Chariklia Zika

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panos N. Kourounakis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Anna Tsantili-Kakoulidou

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Kyriaki Pegklidou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Albin Kristl

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Catherine Koukoulitsa

National and Kapodistrian University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge