Vasudeva Kamath
Central Food Technological Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vasudeva Kamath.
Environmental Toxicology and Pharmacology | 2008
Nandita Singh; Vasudeva Kamath; K. Narasimhamurthy; P.S. Rajini
Our earlier studies have shown that extracts derived from potato peel (PPE) are rich in polyphenols and possess strong antioxidant activity both in vitro and in vivo. The objective of the present study was to investigate its potential to offer protection against acute liver injury in rats. Rats pretreated with PPE (oral, 100mg/kgb.w./day for 7 days) were administered a single oral dose carbon tetrachloride (CCl(4), 3ml/kg b.w., 1:1 in groundnut oil) and sacrificed 8h of post-treatment. Hepatic damage was assessed by employing biochemical parameters (transaminase enzyme levels in plasma and liver [AST-aspartate transaminase; ALT-alanine transaminase, LDH-lactate dehydrogenase]). Further, markers of hepatic oxidative damage were measured in terms of malondialdehyde (MDA), enzymic antioxidants (CAT, SOT, GST, GPX) and GSH (reduced glutathione) levels. In addition, the CCl(4)-induced pathological changes in liver were evaluated by histopathological studies. Our results demonstrated that pretreatment of rats with PPE significantly prevented the increased activities of AST and ALT in serum, prevented the elevation of hepatic MDA formation as well as protected the liver from GSH depletion. PPE pretreatment also restored CCl(4)-induced altered antioxidant enzyme activities to control levels. The protective effect of PPE was further evident through the decreased histological alterations in liver. Our findings provide evidences to demonstrate that PPE pretreatment significantly offsets CCl(4)-induced liver injury in rats, which may be attributable to its strong antioxidant propensity.
Diabetes | 2010
Anjaneyulu Kowluru; Rajakrishnan Veluthakal; Christopher J. Rhodes; Vasudeva Kamath; Ismail Syed; Brandon J. Koch
OBJECTIVE Posttranslational prenylation (e.g., farnesylation) of small G-proteins is felt to be requisite for cytoskeletal remodeling and fusion of secretory vesicles with the plasma membrane. Here, we investigated roles of protein farnesylation in the signaling steps involved in Raf-1/extracellular signal–related kinase (ERK1/2) signaling pathway in glucose-induced Rac1 activation and insulin secretion in the pancreatic β-cell. RESEARCH DESIGN AND METHODS These studies were carried out in INS 832/13 cells and normal rat islets. Molecular biological (e.g., overexpression or small interfering RNA [siRNA]–mediated knockdown) and pharmacologic approaches were used to determine roles for farnesylation in glucose-mediated activation of ERK1/2, Rac1, and insulin secretion. Activation of ERK1/2 was determined by Western blotting. Rac1 activation (i.e., Rac1.GTP) was quantitated by p21-activated kinase pull-down assay. Insulin release was quantitated by enzyme-linked immunosorbent assay. RESULTS Coprovision of structure-specific inhibitors of farnesyl transferase (FTase; e.g., FTI-277 or FTI-2628) or siRNA-mediated knockdown of FTase β-subunit resulted in a significant inhibition of glucose-stimulated ERK1/2 and Rac1 activation and insulin secretion. Pharmacologic inhibition of Raf-1 kinase using GW-5074 markedly reduced the stimulatory effects of glucose on ERK1/2 phosphorylation, Rac1 activation, and insulin secretion, suggesting that Raf-1 kinase activation may be upstream to ERK1/2 and Rac1 activation leading to glucose-induced insulin release. Lastly, siRNA-mediated silencing of endogenous expression of ERK1/2 markedly attenuated glucose-induced Rac1 activation and insulin secretion. CONCLUSIONS Together, our findings provide the first evidence of a role for protein farnesylation in glucose-mediated regulation of the Raf/ERK signaling pathway culminating in the activation of Rac1, which has been shown to be necessary for cytoskeletal reorganization and exocytotic secretion of insulin.
Cardiovascular Research | 2015
Edwin J. Vazquez; Jessica M. Berthiaume; Vasudeva Kamath; Olisaemeka Achike; Elizabeth Buchanan; Monica M. Montano; Margaret P. Chandler; Masaru Miyagi; Mariana G. Rosca
AIMS Cardiomyopathy is a major complication of diabetes. Our study was aimed to identify the sites of mitochondrial dysfunction and delineate its consequences on mitochondrial metabolism in a model of type 1 diabetes. METHODS AND RESULTS Diabetes was induced by streptozotocin injection to male Lewis rats. We found a decrease in mitochondrial biogenesis pathway and electron transport chain complex assembly that targets Complex I. Oxidation of Complex II and long-chain fatty acid substrates support the electron leak and superoxide production. Mitochondrial defects do not limit fatty acid oxidation as the hearts preferred energy source indicating that the diabetic heart has a significant reserve in Complex I- and II-supported ATP production. Both mitochondrial fatty acid oxidation and Complex I defect are responsible for increased protein lysine acetylation despite an unchanged amount of the NAD(+)-dependent mitochondrial deacetylase sirt3. We quantitatively analysed mitochondrial lysine acetylation post-translational modifications and identified that the extent of lysine acetylation on 54 sites in 22 mitochondrial proteins is higher in diabetes compared with the same sites in the control. The increased lysine acetylation of the mitochondrial trifunctional protein subunit α may be responsible for the increased fatty acid oxidation in the diabetic heart. CONCLUSION We identified the specific defective sites in the electron transport chain responsible for the decreased mitochondrial oxidative phosphorylation in the diabetic heart. Mitochondrial protein lysine acetylation is the common consequence of both increased fatty acid oxidation and mitochondrial Complex I defect, and may be responsible for the metabolic inflexibility of the diabetic heart.
Biochemical and Biophysical Research Communications | 2010
Marc L. Goalstone; Vasudeva Kamath; Anjaneyulu Kowluru
A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet beta-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 beta-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20mM] markedly stimulated the expression of the alpha-subunits of FTase/GGTase-1, but not the beta-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.
American Journal of Physiology-endocrinology and Metabolism | 2010
Vasudeva Kamath; Chandrashekara N. Kyathanahalli; Bhavaani Jayaram; Ismail Syed; Lawrence Karl Olson; Katrin Ludwig; Susanne Klumpp; Josef Krieglstein; Anjaneyulu Kowluru
We report localization of a cytosolic protein histidine phosphatase (PHP; approximately 16 kDa) in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knockdown of PHP markedly reduced glucose- or mitochondrial fuel-induced but not KCl-induced insulin secretion. siRNA-mediated knockdown of PHP also attenuated mastoparan-induced insulin secretion, suggesting its participation in G protein-sensitive signaling steps, leading to insulin secretion. Functional assays revealed that the beta-cell PHP catalyzes the dephosphorylation of ATP-citrate lyase (ACL). Silencing of PHP expression markedly reduced ACL activity, suggesting functional regulation of ACL by PHP in beta-cells. Coimmunoprecipitation studies revealed modest effects of glucose on the interaction between PHP and ACL. Confocal microscopic evidence indicated that glucose promotes association between ACL and nm23-H1, a known kinase histidine kinase, but not between PHP and ACL. Furthermore, metabolic viability of INS 832/13 cells was resistant to siRNA-PHP, suggesting no regulatory roles of PHP in cell viability. Finally, long-term exposure (24 h) of INS 832/13 cells or rat islets to high glucose (30 mM) increased the expression of PHP. Such increases in PHP expression were also seen in islets derived from the Zucker diabetic fatty rat compared with islets from the lean control animals. Together, these data implicate regulatory roles for PHP in a G protein-sensitive step involved in nutrient-induced insulin secretion. In light of the current debate on putative regulatory roles of ACL in insulin secretion, additional studies are needed to precisely identify the phosphoprotein substrate(s) for PHP in the cascade of events leading to nutrient-induced insulin secretion.
Journal of Biological Chemistry | 2015
Vasudeva Kamath; Chia-Heng Hsiung; Zachary J. Lizenby; Edward E. McKee
Background: The ability of TMP to serve as a precursor of mitochondrial synthesis of TTP is not well understood. Results: TMP cannot be converted to TTP except by breakdown to thymidine in isolated mitochondria. Conclusion: Thymidine is the sole source for TTP synthesis in the mitochondrial matrix. Significance: Thymidine salvage in mitochondria is crucial to understand mitochondrial DNA depletion diseases caused by mitochondrial thymidine kinase (TK2) deficiency. The primary pathway of TTP synthesis in the heart requires thymidine salvage by mitochondrial thymidine kinase 2 (TK2). However, the compartmentalization of this pathway and the transport of thymidine nucleotides are not well understood. We investigated the metabolism of [3H]thymidine or [3H]TMP as precursors of [3H]TTP in isolated intact or broken mitochondria from the rat heart. The results demonstrated that [3H]thymidine was readily metabolized by the mitochondrial salvage enzymes to TTP in intact mitochondria. The equivalent addition of [3H]TMP produced far less [3H]TTP than the amount observed with [3H]thymidine as the precursor. Using zidovudine to inhibit TK2, the synthesis of [3H]TTP from [3H]TMP was effectively blocked, demonstrating that synthesis of [3H]TTP from [3H]TMP arose solely from the dephosphorysynthase pathway that includes deoxyuridine triphosphatelation of [3H]TMP to [3H]thymidine. To determine the role of the membrane in TMP metabolism, mitochondrial membranes were disrupted by freezing and thawing. In broken mitochondria, [3H]thymidine was readily converted to [3H]TMP, but further phosphorylation was prevented even though the energy charge was well maintained by addition of oligomycin A, phosphocreatine, and creatine phosphokinase. The failure to synthesize TTP in broken mitochondria was not related to a loss of membrane potential or inhibition of the electron transport chain, as confirmed by addition of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone and potassium cyanide, respectively, in intact mitochondria. In summary, these data, taken together, suggest that the thymidine salvage pathway is compartmentalized so that TMP kinase prefers TMP synthesized by TK2 over medium TMP and that this is disrupted in broken mitochondria.
Antimicrobial Agents and Chemotherapy | 2015
Jacob W. Snowdin; Chia-Heng Hsiung; Daniel G. Kesterson; Vasudeva Kamath; Edward E. McKee
ABSTRACT The prevention of mother-to-child transmission (MTCT) of HIV is a crucial component in HIV therapy. Nucleoside reverse transcriptase inhibitors (NRTIs), primarily 3′-azido-3′-thymidine (AZT [zidovudine]), have been used to treat both mothers and neonates. While AZT is being replaced with less toxic drugs in treating mothers in MTCT prevention, it is still commonly used to treat neonates. Problems related to mitochondrial toxicity and potential mutagenesis associated with AZT treatment have been reported in treated cohorts. Yet little is known concerning the metabolism and potential toxicity of AZT on embryonic and neonatal tissues, especially considering that the enzymes of nucleoside metabolism change dramatically as many tissues convert from hyperplastic to hypertrophic growth during this period. AZT is known to inhibit thymidine phosphorylation and potentially alter deoxynucleoside triphosphate (dNTP) pools in adults. This study examines the effects of AZT on dNTP pools, mRNA expression of deoxynucleoside/deoxynucleotide metabolic enzymes, and mitochondrial DNA levels in a neonatal rat model. Results show that AZT treatment dramatically altered dNTP pools in the first 7 days of life after birth, which normalized to age-matched controls in the second and third weeks. Additionally, AZT treatment dramatically increased the mRNA levels of many enzymes involved in deoxynucleotide synthesis and mitochondrial biogenesis during the first week of life, which normalized to age-matched controls by the third week. These results were correlated with depletion of mitochondrial DNA noted in the second week. Taken together, results demonstrated that AZT treatment has a powerful effect on the deoxynucleotide synthesis pathways that may be associated with toxicity and mutagenesis.
Toxicology | 2007
Vasudeva Kamath; P.S. Rajini
Food Chemistry | 2007
Vasudeva Kamath; P.S. Rajini
Journal of Cereal Science | 2004
Vasudeva Kamath; A. Chandrashekar; P.S. Rajini