Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vasudevan Seshadri is active.

Publication


Featured researches published by Vasudevan Seshadri.


Journal of Biological Chemistry | 1999

Ceruloplasmin Ferroxidase Activity Stimulates Cellular Iron Uptake by a Trivalent Cation-specific Transport Mechanism

Zouhair K. Attieh; Chinmay K. Mukhopadhyay; Vasudevan Seshadri; Nicholas A. Tripoulas; Paul L. Fox

The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of “aceruloplasminemic” patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2–3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.


Molecular and Cellular Biology | 2003

Transcript-Selective Translational Silencing by Gamma Interferon Is Directed by a Novel Structural Element in the Ceruloplasmin mRNA 3′ Untranslated Region

Prabha Sampath; Barsanjit Mazumder; Vasudevan Seshadri; Paul L. Fox

ABSTRACT Transcript-selective translational control of eukaryotic gene expression is often directed by a structural element in the 3′ untranslated region (3′-UTR) of the mRNA. In the case of ceruloplasmin (Cp), induced synthesis of the protein by gamma interferon (IFN-γ) in U937 monocytic cells is halted by a delayed translational silencing mechanism requiring the binding of a cytosolic inhibitor to the Cp 3′-UTR. Silencing requires the essential elements of mRNA circularization, i.e., eukaryotic initiation factor 4G, poly(A)-binding protein, and poly(A) tail. We here determined the minimal silencing element in the Cp 3′-UTR by progressive deletions from both termini. A minimal, 29-nucleotide (nt) element was determined by gel shift assay to be sufficient for maximal binding of the IFN-γ-activated inhibitor of translation (GAIT), an as-yet-unidentified protein or complex. The interaction was shown to be functional by an in vitro translation assay in which the GAIT element was used as a decoy to overcome translational silencing. Mutation analysis showed that the GAIT element contained a 5-nt terminal loop, a weak 3-bp helix, an asymmetric internal bulge, and a proximal 6-bp helical stem. Two invariant loop residues essential for binding activity were identified. Ligation of the GAIT element immediately downstream of a luciferase reporter conferred the translational silencing response to the heterologous transcript in vitro and in vivo; a construct containing a nonbinding, mutated GAIT element was ineffective. Translational silencing of Cp, and possibly other transcripts, mediated by the GAIT element may contribute to the resolution of the local inflammatory response following cytokine activation of macrophages.


Journal of Biological Chemistry | 2003

Role of Ceruloplasmin in Macrophage Iron Efflux during Hypoxia

Joydeep Sarkar; Vasudevan Seshadri; Nicholas A. Tripoulas; Michael E. Ketterer; Paul L. Fox

The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular “labile iron pool” that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase-dependent mechanism, possibly involving generation of a negative iron gradient.


Molecular and Cellular Biology | 2001

Translational Silencing of Ceruloplasmin Requires the Essential Elements of mRNA Circularization: Poly(A) Tail, Poly(A)-Binding Protein, and Eukaryotic Translation Initiation Factor 4G

Barsanjit Mazumder; Vasudevan Seshadri; Hiroaki Imataka; Nahum Sonenberg; Paul L. Fox

ABSTRACT Ceruloplasmin (Cp) is a glycoprotein secreted by the liver and monocytic cells and probably plays roles in inflammation and iron metabolism. We showed previously that gamma interferon (IFN-γ) induced Cp synthesis by human U937 monocytic cells but that the synthesis was subsequently halted by a transcript-specific translational silencing mechanism involving the binding of a cytosolic factor(s) to the Cp mRNA 3′ untranslated region (UTR). To investigate how protein interactions at the Cp 3′-UTR inhibit translation initiation at the distant 5′ end, we considered the “closed-loop” model of mRNA translation. In this model, the transcript termini are brought together by interactions of poly(A)-binding protein (PABP) with both the poly(A) tail and initiation factor eIF4G. The effect of these elements on Cp translational control was tested using chimeric reporter transcripts in rabbit reticulocyte lysates. The requirement for poly(A) was shown since the cytosolic inhibitor from IFN-γ-treated cells minimally inhibited the translation of a luciferase reporter upstream of the Cp 3′-UTR but almost completely blocked the translation of a transcript containing a poly(A) tail. Likewise, a requirement for poly(A) was shown for silencing of endogenous Cp mRNA. We considered the possibility that the cytosolic inhibitor blocked the interaction of PABP with the poly(A) tail or with eIF4G. We found that neither of these interactions were inhibited, as shown by immunoprecipitation of PABP followed by quantitation of the poly(A) tail by reverse transcription-PCR and of eIF4G by immunoblot analysis. We considered the alternate possibility that these interactions were required for translational silencing. When PABP was depleted from the reticulocyte lysate with anti-human PABP antibody, the cytosolic factor did not inhibit translation of the chimeric reporter, thus showing the requirement for PABP. Similarly, in lysates treated with anti-human eIF4G antibody, the cytosolic extract did not inhibit the translation of the chimeric reporter, thereby showing a requirement for eIF4G. These data show that translational silencing of Cp requires interactions of three essential elements of mRNA circularization, poly(A), PABP, and eIF4G. We suggest that Cp mRNA circularization brings the cytosolic Cp 3′-UTR-binding factor into the proximity of the translation initiation site, where it silences translation by an undetermined mechanism. These results suggest that in addition to its important function in increasing the efficiency of translation, transcript circularization may serve as an essential structural determinant for transcript-specific translational control.


Journal of Biological Chemistry | 2002

Dual Role of Insulin in Transcriptional Regulation of the Acute Phase Reactant Ceruloplasmin

Vasudevan Seshadri; Paul L. Fox; Chinmay K. Mukhopadhyay

Insulin is a potent negative regulator of the response of hepatic cells to pro-inflammatory cytokines, particularly, interleukin (IL)-6. The action of insulin is target-selective because it inhibits transcription of most but not all acute phase genes. We here show that ceruloplasmin (Cp), an acute phase reactant with important functions in iron homeostasis, is subject to a unique dual regulation by insulin. IL-6 increased Cp mRNA expression in HepG2 cells by ∼5-fold. Simultaneous treatment with insulin reduced this stimulation by half. Surprisingly, insulin by itself caused a 2–4-fold induction in Cp mRNA expression. The mechanism of induction by insulin was studied by transfecting into HepG2 cells chimeric constructs of the Cp 5′-flanking region driving luciferase. The activity of a 4800-bp segment of the Cp 5′-flanking region was increased 3-fold by insulin. Deletion and mutation analyses showed the requirement for a single hypoxia-responsive element in a 96-bp segment ∼3600 bp upstream of the initiation site. The domains required for the two activities of insulin were distinct: The distal, hypoxia-responsive element-containing site was sufficient for Cp transactivation by insulin; in contrast, an 848-bp region adjacent to the initiation site was sufficient for IL-6 transactivation of Cp and for the inhibitory activity of insulin. The role of hypoxia-inducible factor-1 in the induction of Cp by insulin was shown by electrophoretic mobility shift assays and by the absence of insulin-stimulated Cp promoter activation in mouse Hepa c4 cells deficient in hypoxia-inducible factor-1 activity. Taken together these results show that insulin functions as a bidirectional, condition-dependent regulator of hepatic cell Cp expression. The unique regulation of Cp may reflect its dual roles in inflammation and iron homeostasis.


Journal of Biological Chemistry | 2011

Glucose stimulated translation regulation of insulin by the 5'UTR binding proteins

Shardul D. Kulkarni; Bhavana Muralidharan; Amaresh C. Panda; Baskar Bakthavachalu; Arya Vindu; Vasudevan Seshadri

Insulin is the key regulator of glucose homeostasis in mammals, and glucose-stimulated insulin biosynthesis is essential for maintaining glucose levels in a narrow range in mammals. Glucose specifically promotes the translation of insulin in pancreatic β-islet, and the untranslated regions of insulin mRNA play a role in such regulation. Specific factors in the β-islets bind to the insulin 5′ UTR and regulate its translation. In the present study we identify protein-disulfide isomerase (PDI) as a key regulator of glucose-stimulated insulin biosynthesis. We show that both in vitro and in vivo PDI can specifically associate with the 5′ UTR of insulin mRNA. Immunodepletion of PDI from the islet extract results in loss of glucose-stimulated translation indicating a critical role for PDI in insulin biosynthesis. Similarly, transient overexpression of PDI resulted in specific translation activation by glucose. We show that the RNA binding activity of PDI is mediated through PABP. PDI catalyzes the reduction of the PABP disulfide bond resulting in specific binding of PABP to the insulin 5′ UTR. We also show that glucose stimulation of the islets results in activation of a specific kinase that can phosphorylate PDI. These findings identify PDI and PABP as important players in glucose homeostasis.


FEBS Letters | 2007

A minimal element in 5'UTR of insulin mRNA mediates its translational regulation by glucose.

Bhavana Muralidharan; Baskar Bakthavachalu; Anuj Pathak; Vasudevan Seshadri

Glucose induced translation of insulin in pancreatic beta cells is mediated by the 5′UTR of insulin mRNA. We determined the minimal sequence/structure in the 5′UTR of rat insulin gene1 for this regulation. We show that specific factors in the pancreatic islets bind to the 5′UTR of the insulin mRNA upon glucose stimulation. We identified a minimal 29‐nucleotide element in the 5′UTR that is sufficient to form the complex, and confer glucose mediated translation activation. Conserved residues in the predicted stem loop region of the un‐translated region (UTR) seem to be important for the complex formation and the translation regulation.


PLOS ONE | 2014

miR-196b-Mediated Translation Regulation of Mouse Insulin2 via the 5′UTR

Amaresh C. Panda; Itishri Sahu; Shardul D. Kulkarni; Jennifer L. Martindale; Kotb Abdelmohsen; Arya Vindu; Jomon Joseph; Myriam Gorospe; Vasudevan Seshadri

The 5′ and the 3′ untranslated regions (UTR) of the insulin genes are very well conserved across species. Although microRNAs (miRNAs) are known to regulate insulin secretion process, direct regulation of insulin biosynthesis by miRNA has not been reported. Here, we show that mouse microRNA miR-196b can specifically target the 5′UTR of the long insulin2 splice isoform. Using reporter assays we show that miR-196b specifically increases the translation of the reporter protein luciferase. We further show that this translation activation is abolished when Argonaute 2 levels are knocked down after transfection with an Argonaute 2-directed siRNA. Binding of miR-196b to the target sequence in insulin 5′UTR causes the removal of HuD (a 5′UTR-associated translation inhibitor), suggesting that both miR-196b and HuD bind to the same RNA element. We present data suggesting that the RNA-binding protein HuD, which represses insulin translation, is displaced by miR-196b. Together, our findings identify a mechanism of post-transcriptional regulation of insulin biosynthesis.


Biology Open | 2012

Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism

Pabitra Kumar Sahoo; Prayag Murawala; Pravin T. Sawale; Manas Ranjan Sahoo; Mukesh Mani Tripathi; Swati R. Gaikwad; Vasudevan Seshadri; Jomon Joseph

Summary Cells often respond to diverse environmental stresses by inducing stress granules (SGs) as an adaptive mechanism. SGs are generally assembled as a result of aggregation of mRNAs stalled in a translational pre-initiation complex, mediated by a set of RNA-binding proteins such as G3BP and TIA-1. SGs may serve as triage centres for storage, translation re-initiation or degradation of specific mRNAs. However, the mechanism involved in the modulation of their assembly/disassembly is unclear. Here we report that Wnt signalling negatively regulates SG assembly through Dishevelled (Dvl), a cytoplasmic Wnt effector. Overexpression of Dvl2, an isoform of Dvl, leads to impairment of SG assembly through a DEP domain dependent mechanism. Intriguingly, the Dvl2 mutant K446M, which corresponds to an analogous mutation in Drosophila Dishevelled DEP domain (dsh1) that results in defective PCP pathway, fails to antagonize SG assembly. Furthermore, we show that Dvl2 exerts the antagonistic effect on SG assembly through a mechanism involving Rac1-mediated inhibition of RhoA. Dvl2 interacts with G3BP, a downstream component of Ras signalling involved in SG assembly, and functional analysis suggests a model wherein the Dvl-Rac1-RhoA axis regulates G3BPs SG-nucleating activity. Collectively, these results define an antagonistic effect of Wnt signalling on SG assembly, and reveal a novel role for Wnt/Dvl pathway in the modulation of mRNA functions.


FEBS Letters | 2010

Novel splice variant of mouse insulin2 mRNA: implications for insulin expression.

Amaresh C. Panda; Shardul D. Kulkarni; Bhavana Muralidharan; Baskar Bakthavachalu; Vasudevan Seshadri

Insulin is a secreted peptide that controls glucose homeostasis in mammals, and insulin biosynthesis is regulated by glucose at many levels. Rodent insulin is encoded by two non‐allelic genes. We have identified a novel splice variant of the insulin2 gene in mice that constitutes about 75% of total insulin2 mRNA. The alternate splicing does not alter the ORF but reduces the 5′UTR by 12 bases. A reporter gene containing the novel short 5′UTR, is more efficiently expressed in cells, suggesting that alternative splicing of insulin mRNA in mice could result in an additional level of regulation in insulin biosynthesis.

Collaboration


Dive into the Vasudevan Seshadri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amaresh C. Panda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arya Vindu

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Jomon Joseph

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kotb Abdelmohsen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Myriam Gorospe

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge