Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vedrana Filić is active.

Publication


Featured researches published by Vedrana Filić.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress.

Sladana Bursac; Maja Cokarić Brdovčak; Martin Pfannkuchen; Ines Orsolic; Lior Golomb; Yan Zhu; Chen Katz; Lilyn Daftuar; Kristina Grabušić; Iva Vukelić; Vedrana Filić; Moshe Oren; Carol Prives; Siniša Volarević

Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synthesized ribosomal proteins are degraded by proteasomes upon inhibition of Pol I activity by actinomycin D, L5 and L11 accumulate in the ribosome-free fraction where they bind to Mdm2. This selective accumulation of free L5 and L11 is due to their mutual protection from proteasomal degradation. Furthermore, the endogenous, newly synthesized L5 and L11 continue to be imported into nucleoli even after nucleolar disruption and colocalize with Mdm2, p53, and promyelocytic leukemia protein. This suggests that the disrupted nucleoli may provide a platform for L5- and L11-dependent p53 activation, implying a role for the nucleolus in p53 activation by ribosomal biogenesis stress. These findings may have important implications with respect to understanding the pathogenesis of diseases caused by impaired ribosome biogenesis.


Journal of Cell Science | 2012

A dual role for Rac1 GTPases in the regulation of cell motility

Vedrana Filić; Maja Marinović; Jan Faix; Igor Weber

Rac proteins are the only canonical Rho family GTPases in Dictyostelium, where they act as key regulators of the actin cytoskeleton. To monitor the dynamics of activated Rac1 in Dictyostelium cells, a fluorescent probe was developed that specifically binds to the GTP-bound form of Rac1. The probe is based on the GTPase-binding domain (GBD) from PAK1 kinase, and was selected on the basis of yeast two-hybrid, GST pull-down and fluorescence resonance energy transfer assays. The PAK1 GBD localizes to leading edges of migrating cells and to endocytotic cups. Similarly to its role in vertebrates, activated Rac1 therefore appears to control de novo actin polymerization at protruding regions of the Dictyostelium cell. Additionally, we found that the IQGAP-related protein DGAP1, which sequesters active Rac1 into a quaternary complex with actin-binding proteins cortexillin I and cortexillin II, localizes to the trailing regions of migrating cells. Notably, PAK1 GBD and DGAP1, which both bind to Rac1-GTP, display mutually exclusive localizations in cell migration, phagocytosis and cytokinesis, and opposite dynamics of recruitment to the cell cortex upon stimulation with chemoattractants. Moreover, cortical localization of the PAK1 GBD depends on the integrity of the actin cytoskeleton, whereas cortical localization of DGAP1 does not. Taken together, these results imply that Rac1 GTPases play a dual role in regulation of cell motility and polarity in Dictyostelium.


PLOS ONE | 2011

Dictyostelium discoideum Nucleoside Diphosphate Kinase C Plays a Negative Regulatory Role in Phagocytosis, Macropinocytosis and Exocytosis

Sarah J. Annesley; Ruzica Bago; Maja Herak Bosnar; Vedrana Filić; Maja Marinović; Igor Weber; Anil Mehta; Paul R. Fisher

Nucleoside diphosphate kinases (NDPKs) are ubiquitous phosphotransfer enzymes responsible for producing most of the nucleoside triphosphates except for ATP. This role is important for the synthesis of nucleic acids and proteins and the metabolism of sugars and lipids. Apart from this housekeeping role NDPKs have been shown to have many regulatory functions in diverse cellular processes including proliferation and endocytosis. Although the protein has been shown to have a positive regulatory role in clathrin- and dynamin-mediated micropinocytosis, its roles in macropinocytosis and phagocytosis have not been studied. The additional non-housekeeping roles of NDPK are often independent of enzyme activity but dependent on the expression level of the protein. In this study we altered the expression level of NDPK in the model eukaryotic organism Dictyostelium discoideum through antisense inhibition and overexpression. We demonstrate that NDPK levels affect growth, endocytosis and exocytosis. In particular we find that Dictyostelium NDPK negatively regulates endocytosis in contrast to the positive regulatory role identified in higher eukaryotes. This can be explained by the differences in types of endocytosis that have been studied in the different systems - phagocytosis and macropinocytosis in Dictyostelium compared with micropinocytosis in mammalian cells. This is the first report of a role for NDPK in regulating macropinocytosis and phagocytosis, the former being the major fluid phase uptake mechanism for macrophages, dendritic cells and other (non dendritic) cells exposed to growth factors.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis.

Alexander Junemann; Vedrana Filić; Moritz Winterhoff; Benjamin Nordholz; Christof Litschko; Helena Schwellenbach; Till Stephan; Igor Weber; Jan Faix

Significance Macropinocytosis and phagocytosis are two Ras-regulated, highly related processes of great physiological relevance collectively termed large-scale endocytosis. Both are actin-driven and entail engulfment of extracellular material by crown-like protrusions. Aside from the Arp2/3 complex, which serves as the main nucleator of branched actin filaments at the cup rim, the underlying mechanisms of actin assembly still remain elusive. Here, we analyzed the role of Diaphanous-related formin G (ForG) from Dictyostelium by biochemical, genetic, and imaging techniques. Our data demonstrate that this formin exhibits a rather weak nucleation activity and imply that ForG-mediated filament elongation synergizes with the Arp2/3 complex in actin assembly. Finally, we identify ForG as a Ras-regulated formin and show its significance for actin assembly in endocytic structures. Phagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups. Biochemical analyses revealed that ForG is a rather weak nucleator but efficiently elongates actin filaments in the presence of profilin. Notably, genetic inactivation of ForG is associated with a strongly impaired endocytosis and a markedly diminished F-actin content at the base of the cups. By contrast, ablation of the Arp2/3 (actin-related protein-2/3) complex activator SCAR (suppressor of cAMP receptor) diminishes F-actin mainly at the cup rim, being consistent with its known localization. These data therefore suggest that ForG acts as an actin polymerase of Arp2/3-nucleated filaments to allow for efficient membrane expansion and engulfment of extracellular material. Finally, we show that ForG is directly regulated in large-scale endocytosis by RasB and RasG, which are highly related to the human proto-oncogene KRas.


Cellular and Molecular Life Sciences | 2014

The IQGAP-related protein DGAP1 mediates signaling to the actin cytoskeleton as an effector and a sequestrator of Rac1 GTPases

Vedrana Filić; Maja Marinović; Jan Faix; Igor Weber

Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.


Histochemistry and Cell Biology | 2016

Quantitative imaging of Rac1 activity in Dictyostelium cells with a fluorescently labelled GTPase-binding domain from DPAKa kinase

Maja Marinović; Marko Šoštar; Vedrana Filić; Vlatka Antolović; Igor Weber

Small Rho GTPases are major regulators of the actin cytoskeleton dynamics in eukaryotic cells. Sophisticated tools used to investigate their activity in living cells include probes based on fluorescence resonance energy transfer (FRET), bimolecular fluorescence complementation, and photoactivation. However, such methods are of limited use in quickly migrating cells due to a short time available for image acquisition leading to a low signal-to-noise ratio. Attempts to remedy this effect by increasing the intensity of illumination are restricted by photobleaching of probes and the cell photosensitivity. Here we present design and characterization of a new fluorescent probe that selectively binds to active form of Rac1 GTPases, and demonstrate its superior properties for imaging in highly motile Dictyostelium cells. The probe is based on the GTPase-binding domain (GBD) from DPAKa kinase and was selected on the basis of yeast two-hybrid screen, GST pull-down assay and FRET measurements by fluorescence lifetime imaging microscopy. DPAKa(GBD) probe binds specifically to GTP-bound Rac1 at the cell membrane and features a low cytoplasmic background. The main advantage of DPAKa(GBD) in comparison with similar probes is its finely graded intensity distribution along the entire plasma membrane, which enables quantitative measurements of the Rac1 activity in different parts of the membrane. Finally, expression of DPAKa(GBD) induces no adverse effects on cell growth, motility and cytokinesis.


Journal of Microbiological Methods | 2014

A simple optical configuration for cell tracking by dark-field microscopy

Vlatka Antolović; Maja Marinović; Vedrana Filić; Igor Weber

We describe a simple optical configuration for dark-field microscopy at low magnification, realized with the use of standard microscope components. An inherent high contrast makes this method attractive for computer-assisted tracking and counting of microorganisms. We applied this setup for dark-field microscopy to measure the speed of migrating Dictyostelium amoebae.


Laboratory Investigation | 2018

Modulation of small GTPase activity by NME proteins

Vedrana Filić; Maja Marinović; Marko Šoštar; Igor Weber

NME proteins are reported to influence signal transduction activity of small GTPases from the Ras superfamily by diverse mechanisms in addition to their generic NDP kinase activity, which replenishes the cytoplasmic pool of GTP. Comprehensive evidence shows that NME proteins modulate the activity of Ras GTPases, in particular members of the Rho family, via binding to their major activators GEFs. Direct interaction between several NMEs and Ras GTPases were also indicated in vitro and in vivo. These modes of regulation are mainly independent of the NME’s kinase activity. NMEs also modulate the Ras-mediated signal transduction by interfering with the formation of a Ras signaling complex at the plasma membrane. In several examples, NMEs were proposed to perform the role of GAP proteins by promoting hydrolysis of the bound GTP, but this activity still requires additional verification. Early suggestions that NMEs can activate small GTPases by direct phosphorylation of the bound GDP, or by high-rate loading of GTP onto a closely apposed GTPase, were largely dismissed. In this review article, we survey and put into perspective published examples of identified and hypothetical mechanisms of Ras signaling modulation by NME proteins. We also point out involvement of NMEs in the transcriptional regulation of components of Ras GTPases-mediated signal transduction pathways, and reciprocal regulation of NME function by small GTPases, particularly related to NME’s binding to membranes.


DICTY 2017 Meeting Booklet | 2017

Rac1 dynamics in Dictyostelium cells

Vedrana Filić; Maja Marinović; Marko Šoštar; Vlatka Antolović; Jan Faix; Igor Weber


12th Meeting of the Slovenian Biochemical Society with International Participation Book of Abstracts | 2017

Formins orchestrate the cortical actin cytoskeleton in amoeboid cell migration and large-scale endocytosis

Igor Weber; Jan Faix; Vedrana Filić

Collaboration


Dive into the Vedrana Filić's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Faix

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge